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FOREWORD

The papers included here have been presented in summary form at the Flight Mechanics Symposium held
May 18-20, 1999, at the NASA Goddard Space Flight Center. For completeness, abstracts have been included
for those papers that were presented but unavailable at the time of printing. The papers in this document are
presented as received from the authors, with little or no editing.
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EXTENDED QUEST ATTITUDE DETERMINATION FILTERING

Mark L. Psiaki
Commell University

ABSTRACT

The quaternion estimation (QUEST) batch attitude determination algorithm has been extended to work in a general
Kalman-filter framework. This has been done in order to allow the inclusion of a complicated dynamics model and to allow
the estimation of additional quantities beyond the attitude quaternion. The QUEST algorithm, which works with vector
attitude observations, serves as a starting point because it is able to work with a poor (or no) first guess of the attitude. It is
able to do this because its nonlinear estimation problem can be solved exactly by solving an eigenvalue/eigenvector problem.
This paper's extended version of QUEST uses square-root information filtering techniques and linearization of the dynamics to
handle all of the non-QUEST parts of the estimation problem. The remaining QUEST-type part of the problem can be solved
by a technique that is an extension of the original QUEST algorithm's eigenvalue/eigenvector solution. The paper shows that
two previously-proposed iterative QUEST techniques are special cases of the present algorithm. It also demonstrates the new
algorithm's performance on an attitude determination problem that uses star-tracker and rate-gyro measurements to estimate
the attitude time history and the rate-gyro biases. The new algorithm is able to converge from initial attitude errors of /80 and
initial rate-gyro bias errors as large as 2,400%hour.

INTRODUCTION

Most space missions require knowledge of the spacecraft's attitude. This knowledge is normally derived from on-board
sensor data. Possible measured quantities include the Sun direction vector, the Earth's magnetic field vector, the Earth nadir
vector, the Earth-limb crossing time of a horizon scanner bore sight, the direction vectors to bright stars, and the differential
carrier phase of Global Positioning System signals 12 Some of these quantities contain 2-axis attitude information: a unit
direction vector measured in spacecraft coordinates and known in inertial coordinates. Other quantities contain only 1 axis
worth of information: the cosine of an angle between a spacecraft referenced vector and an inertially-referenced vector.

In order to derive a spacecraft's full 3-axis attitude, 2 or more attitude measurements must be processed together. A
variety of methods exist for processing attitude data. These include geometric-based methods ', extended Kalman filters **,
and a special algorithm known as the quaternion estimation (QUEST) algorithm *'°. Geometric-based methods can operate on
any type of attitude data, but they do not easily make use of redundant data or complex dynamic models. Kalman filters are
excellent at handling multiple redundant sensor signals and at incorporating dynamic models and data that has been measured
at different times. Unfortunately, an extended Kalman filter can exhibit sensitivity to the initia) attitude guess because it relies
on linearizations of the spacecraft's nonlinear measurement and dynamics models. In some situations this sensitivity can cause
an extended Kalman filter to diverge °.

The basic QUEST algorithm solves Wahba's problem ' Given a set of known unit direction vectors in inertial
coordinates, r; for i = 1, ..., m, their measured values in spacecraft coordinates, b; for i = 1, ..., m, and their per-axis direction
uncertainties (in radians), o; for i = /, ..., m, the problem is to

find: Alg) (1a)
to minimize: Jouesr{A(g)} = gﬁlj{b,-A(q)r,- H (b - Alg)r; } (1b)
subject to: qTq =] (1¢)

where g is the attitude quaternion for the transformation from inertial coordinates to spacecraft coordinates and A(g) is the
direction cosines matrix for that same transformation. The formula for 4(g) can be found on p. 414 of Ref. 1.

The QUEST algorithm has advantages in comparison to standard extended Kalman filters. One great advantage is that
it can be solved exactly by solving an eigenvalue problem 9 1t can never diverge because this solution procedure does not
depend on having a first guess. Another advantage is that it explicitly and optimally preserves the attitude quaternion'’s



normalization.

The QUEST algorithm also has disadvantages in comparison to extended Kalman filters. One disadvantage is that it
can deal only with vector-type measurements, not with cosine-type measurements. This limits its use to missions where the
attitude measurements are all vector-type measurements. A more significant disadvantage of the QUEST algorithm is that it
can deal only with very simple dynamic models. The attitude rate time history must be input to QUEST in order for it to use
data that has been measured at different times '°. If this attitude rate time history is derived from rate-gyro measurements, then
they cannot have significant biases, which constitutes a severe limitation.

A related disadvantage is the QUEST algorithm's inability to estimate anything other than the attitude quaternion. In
its original form, it cannot be used to estimate quantities such as sensor misalignments, rate-gyro biases, or other typical filter
states. Therefore, QUEST cannot be used as part of a general attitude determination filter. A linearized version of the QUEST
measurement equation can be used in a generalized filter °, but linearization makes any such algorithm prone to diverge if the
initial attitude uncertainty is large.

It would be a great advantage if the QUEST algorithm could be extended to handle an arbitrary dynamic model and the
estimation of states other than the attitude quaternion. With such extensions, the QUEST algorithm could be applied using
Euler's equations to estimate the attitude rates or using realistic rate gyros to measure them. If Euler's equations were used,
then the attitude rates would be estimated as part of the filter state. If rate gyros were used, then the filter's state could include
estimates of the rate gyros' biases.

References 12 and 13 document an attempt to extend QUEST to include estimation of other parameters. That
approach is based on solving the following extended problem:

find: q and x (22)

to minimize: J(gx) = 43 (b - A@n (o) (b9 - A9} + Lc-x)TWO-x0) (2b)
i=]%i

subjectto: glq = I (20

where x is a vector of additional parameters, x0 is it’s a priori value, and W9 is a symmetric positive-semidefinite weighting
matrix. A problem with dynamics and rate-gyro measurements can be posed in this form '>. The rate-gyro biases are
estimated as part of the x vector.

Reference 12 develops a solution algorithm for problem (2a)-(2c). It works with guesses of the optimal x and solves
exactly for the corresponding optimal g by using the QUEST procedure. An outer loop improves the x guesses by numerical
iteration. The algorithm is a batch algorithm, and it showed no significant advantages in comparison to a standard batch
algorithm when compared on a test problem .

This paper has two goals. One is to extend the QUEST algorithm to include arbitrary dynamics and additional
estimated states while retaining QUEST's measurement-error cost function and its explicit constraint of the quaternion norm.
The other goal is to develop an iterative QUEST filter rather than a batch filter, one that functions as much as possible like an
extended Kalman filter while retaining the good features of the QUEST algorithm.

Achievement of these goals will constitute an advance over the work of Ref. 12. That paper's algorithm cannot handle
arbitrary dynamics, and it requires numerical iteration to converge to an estimate of the auxiliary x vector. The new algorithm
uses extended-Kalman-filter-type stage-to-stage iterations to achieve convergence to its x estimate. This type of iteration is
normally much faster than batch-filter iteration because this type computes problem function gradients only once per stage.

This paper also represents an advance in the area of preserving quaternion normalization within the context of an
extended Kalman filter. References 4, 5, and 7 develop special techniques to preserve quaternion normalization within a
linearizing extended Kalman filter. They do not explicitly enforce the quaternion normalization constraint during the attitude
update. Rather, they use ways that implicitly enforce the constraint °, or they develop ways to re-normalize the quaternion
after the update “’. The present paper explicitly enforces the quaternion normalization in an optimal manner.

The extended QUEST algorithm is presented and analyzed in the four main sections of this paper. The second section



reviews the QUEST algorithm and its associated quadratically-constrained quadratic optimization procedure. It then presents
and solves an extended quadratically-constrained quadratic problem that is compatible with the extended QUEST algorithm.
The third section presents the extended QUEST filtering problem statement and the algorithm that solves the problem. The
fourth section shows how to compute the estimation error covariance of the filter. The last main section presents test-case
results that are based on data from a simulated truth model.

REVIEW AND EXTENSION OF QUEST SOLUTION MATHEMATICS
Original QUEST Solution

QUEST's efficient solution of Wahba's problem hinges on the fact that the cost function in eq. (1b) can be written as a
quadratic form in g:

m
JQUEST{A (q)} = Z 'Lz' + 'é'qTHmeasq (3)

i=19;

where the symmetric Hessian matrix in eq. (3) is 8.10.12,

m [ (106 )= rb] —bir| ]~ (b xn)
Hmeas = 2 =3 T T )
i=19i —(b;xr;) -bir
The minimization of J{A(g)} in eq. (3) subject to the quaternion normalization constraint, g7g = [, constitutes a
quadratically-constrained quadratic program. If one adjoins the quaternion normalization constraint to the cost function using
the Lagrange multiplier A2, then differentiation of the resulting Lagrangian function with respect to g leads to the following
optimality necessary condition:

(Hmeas""u)q =0 or Hmeasq = -A9 (6)]

From the right-hand version of eq. (5), it is plain that g is a normalized eigenvector of Hmeas and that —A is the corresponding
eigenvalue. The optimal solution to Wahba's problem is achieved when g corresponds to the —A value that is the smallest (the
most negative) eigenvalue of Hmeas-

A Generalized Quadratic Program

The extended QUEST filter needs to be able to solve a slightly more general quadratically-constrained quadratic
program:

find: q (6a)
to minimize: J(g) = —é—qTHq+gTq + constant (6b)
subject to: qTq =] (6¢)

In this formulation, A is the cost function's Hessian matrix, and g is the cost function's gradient vector at g = 0.

There are two differences between this problem and the quaternion optimization form of Wahba's problem. Both of
them arise from the inclusion of a priori information at the given sample instant. The first difference is that there is a linear
cost term, g7q. The second difference is that the Hessian matrix, H, is no longer the Hmeqs matrix given in eq. (4). Instead, H
will be a combination of Hyeqs and an a priori term.

Solution of the Generalized Quadratic Program

Problem (6a)-(6¢) can be solved by forming a Lagrangian and deriving optimality necessary conditions 4 In this case,
eq. (5) generalizes to become:

(H+Al)g+g =0 ™



This equation can be solved for ¢, g = -(H + /11)'1 g, and the result can be substituted into constraint (6¢) to yield a scalar
equation in the scalar unknown A:

gTH+2g =1 )

If one multiplies both sides of eq. (8) by the square of the determinant of (H + Al) , then the resulting equation is an 8"-order

polynomial in 4, and the optimal /1 can be determined by solving that polynomial. The global minimum of problem (6a)-(6¢)
occurs at the A that is the largest (most positive) real solution of eq. (8) *. This A value is the only real solution to eq. (8) that
is greater than or equal to the negative of the minimum eigenvalue of H, which guarantees that the Hessian of the Lagrangian

function, H+ A/, will at least be positive-semidefinite.

An efficient solution procedure for eq. (8) makes use of an eigenvalue decomposition of H:

-4 0 0 0 8:1
0 -4, 0 0 ;
H=v 2 yT and | 52| = yT, ©)
0 0 -4 0 8:3
0 0 0 -4 g4

where V = [v;, v, v3, v4] is a matrix of orthogonal eigenvectors, -4; >-1; >~13 > -1, are the four eigenvalues, and g;;, g:,
8:3, and g4 are the components of a transformed gradient vector. Using the V transformation and the notation in eq. (9), eq.
(8) can be rewritten in the following form:

2 2 2 2
oy = —Eel 4 82 . 83 . 8 s-1=0 (10)
(=2 (A=-2,)7  (A-13)7  (A-4y)

Figure 1 shows a typical plot of f{4) vs. 2. The negatives of the eigenvalues of H are marked on the bottom of the plot
as Aj, A2, A3 and Ay, and the optimal solution to eq. (8) is marked as Aopr. Notice that it occurs at the highest value of 1 for
which f(4) = 0. Notice, also, that there is an infinite peak in the plot at each of the A; values.

There is an efficient solution procedure that exploits the form of the curve in Fig. 1. It takes advantage of the facts that
Aopt 2 A4 and that f{’4) is monotonically decreasing for 4 > A;. These characteristics make it possible for any efficient
numerical scalar equation solver, such as the guarded secant method, to determine Agpt in very few iterations.

The solution of the original QUEST problem is a special case of this solution technique. As 84 approaches 0, the f{4)
spike at 1 = A4 becomes infinitely narrow, and Aopt Will approach Ay if gz, g;2, and g;3 are sufficiently small. All of the i
values are zero in the original QUEST algorithm; so, Aopt = A4 in this case. When Aopr = A4, the matrix (H + AJ) is singular,
but eq. (7) still has a solution. In fact, it has multiple solutions. An optimal solution is determined by inverting the
nonsingular part of (H + AJ) in eq. (7) to solve for the part of g that is a linear combination of the eigenvectors vy, vy, and v3.
The solution is completed by adding the term a v to g and by selecting a to be large enough to satisfy the normality constraint
in eq. (6¢). There will be positive and negative values of « that satisfy the quaternion normalization, and both solutions will be
global minima to problem (6a)-(6¢) '*. In the case of QUEST, the two g solutions, # vy, are equivalent estimates of the attitude
because A(g) = A(-q).

EXTENDED QUEST FILTER ALGORITHM
Filtering Problem Statement

The extended QUEST filtering problem statement is defined for a single stage of a sampled data or discrete-time
system. As will be shown, its solution leads to a natural method for iteration when dealing with multiple-stage systems. The
problem is stated as a least-squares optimization problem, in keeping with the original Wahba formulation:

find: g and xg)  {and gu.7), *k-7), and, w-1)} (11a)



—{’_{bi(k) - Afggy Jrigy } T{bi(k) - Alqmy Jrip }

(k)
=] Ciw

m
to minimize: J = -é— >
i

+ jlg‘{wa(k-I)W(k-l)}T{wa(k-l)w(k-l)} + %{qu(k-u[q(k-/) -é(k-u]}T{qu(k-u[q(k-u - é(k-z)]}

+ %{qu(k-u (A1) - G-y ] + Ruxte-ny[3-1) = (i-1) I {qu(k-l)[q(k-l) -] + Rae-1) -1y - X-1) ]}

+ constant (11b)

subject to: 9a) = ¢{t(k)’t(k-l);q(k-1)’x(k-I)’w(k-I)}q(k-I) (11c)
X = Sellggte-1); A-1) ¥k-1)> Wek-1) (11d)

9ol = 1 (1e)

The quantities in the above problem statement are defined as follows: g is the attitude quaternion, x is the vector of
auxiliary filter states, and w is the process noise vector. The subscript / J; refers to sample instant k, which occurs at time ),
and the subscript [ J&.7) refers to sample instant k-1, which occurs at time #-7) (< txy). Just as in the usual QUEST cost
function, the measured vectors b;) for i = 1,...,mgy are the attitude reference unit direction vectors as measured in spacecraft
coordinates at sample time ), the unit vectors rig) for i = I,...,mg, are the known inertial directions of the measured vectors,

and the gj) standard deviations are the per-axis accuracies of the bj) measurements. The vectors gp.j) and Xg.j) are the a

posteriori (or best) estimates of g and x at sample time /-). The matrices Rywk-1)» Rgq(k-1)> Rxqtk-1), and Ryxk-1) are weights
that penalize the differences between g-1), X(k-1). and, w.;) and their a posteriori estimates at sample time #-7)-

Equations (11c¢) and (11d) constitute the filter's dynamic model. The 4x4 matrix Dftg),tx-1)5 dik-1)»¥(k-1)» Wik-1) }is

the orthogonal state transition matrix from time f.;) to time ¢ that is associated with the quaternion's kinematic differential
equation:

0 o0 -w) @t
ey 0 @) o)
9= 2 oy -y 0  w30|" (12)

—wyt) —wy) -3 0

In this equation [aw(t); w(t); a3(t)] = Xt ta-1), G(e-1)» X(k-1)» Wik-1 )} is the attitude rate vector during the time interval t-7) to
1. As shown in this formula, e(?) may depend on the quaternion, the auxiliary state vector, or the process noise vector at time
t@-1)- The specific form of this dependence will be dictated by the specific dynamic model that is used in the filter.

The remainder of the dynamic model consists of the discrete-time auxiliary state transition function
Seltag ta-1); G-1):X(k-1)» Wk-1) } . This is a vector function whose result has the same dimension as the auxiliary state vector

x. This discrete-time function may be the result of numerical integration of auxiliary dynamic differential equations from time
t(k-1) to time ), or it may be directly defined in discrete-time. The former situation holds if the x vector contains attitude rate
estimates that get propagated via numerical integration of Euler's equations for an attitude dynamics modet of the spacecraft.
The latter situation may hold for a spacecraft that has rate gyros whose biases are estimated as part of x. If the auxiliary state
vector is propagated between samples by numerical integration of a differential equation, then it will usually be best to
integrate that equation and eq. (12) simultaneously.

It may be useful to pose a filter problem that has no measurements associated with some of the problem stages. In other
words, mg = 0 would hold for some (but not all) values of . This might be needed because of the way in which process noise
enters this model. It is modeled as a discrete-time process, wk-1j, W), Wik+1) --- One might want to use this discrete-time
process noise to approximate the effects of a continuous-time white process noise. If the time period between actual attitude
measurements is too large, then one needs to add extra "pseudo measurement” times between the actual attitude measurements.
These extra "pseudo samples” break up the interval between measurements into multiple intervals over which different w)



act. This modeling trick prevents the effective continuous-time process noise from losing its whiteness by having too large of
a correlation time.

The problem in egs. (11a)-(11e) is closely related to a combination of the square-root information filtering update and
propagation problems of Ref. 15. Square-root information filters are normally developed by using least-squares estimation
techniques, but they also admit a statistical interpretation. The statistical interpretation of the present filter is as follows:
Rww(k-1) is the square root of the a priori information matrix for the random W-1) vector, and [Ryqe.1), 0; Rugk-1), Rxxr-1)] is
the square root of the a posteriori information matrix for the state estimate (3.1 )5 Xg-nl-

The above problem form only admits vector attitude measurements, but it can easily be extended to include general
attitude measurements. The attitude measurements appear in the first least-squares cost term on the right-hand side of €q.
(11b). If other measurements were available, such as the cosine of the angle between a known inertial reference vector and a
known spacecraft instrument vector, then an additional cost term would need to be added to the above problem statement to
penalize the difference between the measured value of the cosine and the filter's best estimate of it. In that case, the filtering
algorithm that will be presented below would need to linearize the resulting measurement equation. It would deal with such
measurements just like any standard extended Kalman filter deals with such measurements. In this situation there would be no
benefit from using the current filter beyond that of optimal maintenance of quaternion normalization, but there would also be
no harm in using it.

New Filtering Algorithm

The new filtering algorithm is an iterative procedure that is made up of two phases per sample period. The algorithm
that is developed here is an extended square-root information filtering algorithm ", which forms its estimates by using least-
squares-type procedures. Its first phase is a state and square-root information matrix propagation step. This phase starts with
the a posteriori estimates at stage -/ and dynamically propagates them in order to compute the a priori estimates at stage 4.
This phase is carried out as in an extended Kalman filter, which means that the dynamics get linearized about stage k-/'s a
posteriori state estimate in order to propagate the information matrices' square roots. The second phase of the process is the
measurement update. This is the process of combining the a priori information at stage 4 with the vector attitude
measurements at that stage in order to produce the best (or a posteriori) estimates of 9y and x) given all of the available data
up to that stage. This latter phase of the filtering process is where this paper makes its contributions.

Dynamic Propagation Phase

Although not new to this paper, the state propagation phase is presented here for purposes of completeness and in order
to define notation for use later in the paper. The goal of propagation is to eliminate gg.;), Xk-1), and wg. ;) from problem
(11a)-(11e). The propagation procedure uses the constraints in egs. (11c) and (11d) to eliminate g, ) and xx.;). It next
eliminates w.;) by partially optimizing the resulting cost function with respect to that quantity. This yields a cost function
that depends only on g and x). This cost is only an approximation of the original cost function because of the linearization
of the dynamics about stage &-1's a posteriori state estimate.

The propagation procedure first determines ?j(k) and Xy, the a priori estimates of 9k and xg). It does this by
nonlinear propagation of egs. (11¢) and (11d):

0 = Pllagt-1); -1y %e-1) 0 ety (13a)
X = Sfeltwtwenys Q-1 %100} (13b)
Note that wy.;) = 0 is used in this propagation because zero is its a priori expected value.
The filter next develops a linearized dynamic model. This model takes the form:

[“qﬂd} _ [‘qu(k-u ‘qu(k-u} [A‘I(k-l)J .\ [f qtk-1)

Weke1) (14)
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and Axg.;) =

where the perturbations are defined to be Aqq) = 9w - duy» M) = X@) - Xp)s A1) = 90-1) - dek-1)>
oise effectiveness matrices in eq. (14) are Jacobians of the dynamics

X@-1) - Xg-1)- The state-transition and process n

equations, (11¢) and (11d):

0. 0. 0.
Pogk-1) = ¢+[—5;]qﬂ«-u' Poxk-1) = [gx—]q(k-v' Lag-1) = {g]q(k-l) (152)
&, &,
(D ~ = _X’ ¢ . = ._X_, F _ = JX ]5b
xq(k-1) 2 (k) = 5 *-1) T (15b)

with all of the partial derivatives evaluated at the point [qk-1);x@-1:Wee-1)] = [ d-1)° Xg-1):0]-

The final operations of the propagation step are to form a large information matrix and to left QR-factorize it:

5 -1
Ryqrk) 9 0 Ry 0 [Paate-ty Paxteny| |1 0 ~Tapen)
Qo Ijxq(k) Ifxx(k) _ 0 = || Regk-1)  Ruxt-1) || Prqti-1)  Poxii-1) 0 I —Tyg.p (16)
[0 0 Rywix-1)

Rygk) Ruxik) Ruwik-1)

where Q is an orthogonal matrix. The matrices qu(k), Exx(k) , and Eww(k_ j) are square matrices, and kxx(k ) and Ewk_ I
ing techniques that are standard to square-root

are both nonsingular. This orthogonal transformation can be carried out us

information filtering **.

The result of the propagation step is a modified form of the cost function in eq. (11b):
M) ~ ~
- 4 1 T 1 ~ T ~
J=7Z ;;k)—{ bty - Al Jrig b - Al T # + 5 Reqw a0 G0 W {Roglag -Tw 1/
+ L{ Roq (a9 - T 1+ Rty ¥ - 9 W {Rugwlag -im ]+ R len -39 I/ (17)
constraints in egs. (11¢) and (11d) are

This modified cost function is an approximation of the cost in eq. (11b) if the dynamic
exact if they are linear. Note that eq. (17) assumes that wg) is set to its optimal value:

(18)

nonlinear, but it is
-- R} {r -Gu]+R %3]/
{Wk-1)}opt k1) L Rowgola) -G 1+ R Xy ~Xpy IS -

Measurement Update Phase
The measurement update procedure solves a quadratically-constrained quadratic program. In order to form the

quadratic program, it uses egs. (3) and (4) to express the QUEST-type squared measurement-error cost terms as a quadratic
Given that the resulting measurement error Hessian matrix is Himeasck), the measurement update problem

form in qu-
becomes:
(192)

find: g and xx)

s _ 1T 5 ~ T f% ~

to minimize: J = %Wk)H meas(dd) %{qu(k) (309 -9y ] } {qu(k) IR ) }
+ é’{ﬁxq(k) (909-90 ]+ R [* g - %19 ]} 4 {Exq(k)[ G -9 ]+ Remlxag-Za ] } + constant  (19b)
(19¢)

subject to: q(i)q(k) =]
Optimization problem (19a)-(19¢) can be solved in two steps, one that finds the optimum xs) as a function of gp) and
s not enter constraint (19c). Therefore, it can be optimized by

the other that optimizes ggy. The x auxiliary state vector doe



setting &/ k) equal to zero and solving the resulting linear equation for x(y- The optimal value is

(xthopr = gy - RexggRagaolap -] 20

Substitution of the optimal x4) from eq. (20) into the eq.-(19b) cost function yields the following least-squares
optimization problem for determining the measurement update:

find: 90 (21a)
.. T ~ ~ T/ -~

to minimize: J = L0 Heastdns + ${Reamy (3w - G301} { Reaplay -G 1} + constant @1b)

subject to: qﬁ)q(k) =] (21¢)

This problem is in the same general form as the quadratically-constrained quadratic program in egs. (6a)-(6¢c). This

equivalence is evident if one defines: H = H meask) Eqrq(k)ﬁqq(k) andg = —I?qTq(k)ﬁqq(kﬁ(k) .

The measurement update is completed by solving problem (6a)-(6c) with the 4 matrix and g vector given above. The
solution to this problem is the a posteriori estimate of the attitude quaternion at sample £, 4a - This value of gg) is next

substituted into eq. (20) to compute the a posteriori auxiliary state vector estimate at sample £, i(k) =
= 51 3 A
Xty = RopgRuguolday -dmy ] -

In order for the algorithm to be recursive, the measurement update procedure must re-express the cost function in eq.
(19b) in terms like those of eq. (11b) that constitute the a posteriori cost function at sample &-/ — the 3™ and 4™ terms on the

right-hand side of eq. (11b). This cost function must be a quadratic form in {90y -9p)] and [xpy-%p)] -

It is possible to derive a cost function in the required form that is equivalent to the cost in eq. (19b) on the manifold
T = 7-
amdm = I:

= 4 s 4T 5T B .
= $la0y -G )" {Homeasty + RigayRagy + At Ham -do )
~ " ~ - T f~ - ~ . "
5 Reagolamy - am 1+ Reagy iy - 50y 1 {Reamola09-dn ]+ Ry 3y -3y 1} + constamt 22
Note that Ay in this equation is two times the optimal Lagrange multiplier for the quaternion normalization constraint.

Equivalence between this cost function and the eq.-(19b) cost function on the manifold is sufficient for the purpose of
recursive filtering because all optimizations at successive sample instants are effectively constrained to this manifold, at least

to first order in the perturbations {am) -9uy] and [xpy - %] -

The cost function in eq. (22) can be derived by making use of the optimality necessary conditions for the measurement
update,

R {Reamllpy - 1+ Resqiplig S 1} = 0 (23a)

{H measty + RagagRogay + A1 Jiy) - RgatoRagtidng = 0 (23b)
and the following condition

é[ﬂmq -dmy] T[(I(k) -dul] = -é}’;c)q(k) +1 24

which can be derived from the quaternion normalization constraint. The detailed derivation of eq. (22) is straightforward, but
it has been omitted for the sake of brevity.

One last step completes the preparations for recursive application of the algorithm at an incremented value of £. This



step is to express the eq.-(22) cost as a sum of squares:
= 1 A T -
J = + LfReawolaw - dw 1} { Rearolam - i}

+ L{Regmlam -0 + Ryl -3 JfT {Regto (900 - G007 + Rextty 50 - %0 ]} +constant (29

. . T ~r 5 -~
where Rgqq) is @ matnix squaré root: RogamReqmy = {Hmeas(k)+qu(k)qu(k)+A(k)I } and where Rypy = Rigm and

Ramy = ﬁn(k) . The matrix square root Rggq) is guaranteed to exist because the matrix {Hpegs) + E;q(k)qu(k) + gyl } s at
Jeast positive-semidefinite at the global minimum of problem (21a)-(21c), and it may be positive definite. This matrix square
root can be computed using the eigenvalue/eigenvector decomposition of {Hpeasiy + ﬁ;:](k)ﬁqq(k) } which is part of the
solution procedure for a quadratically-constrained quadratic program that is presented in the second section of this paper.

Comparison with other QUEST Algorithms.

The present algorithm is a generalization of the QUEST algorithms presented in Refs 9 and 10. It reduces exactly to the
previous algorithms under appropriate problem modeling assumptions. First of all, if no dynamics are assumed in the problem
and if there is no auxiliary state vector t0 estimate, then only the first term on the right-hand side of eq. (1 1b) remains in the
cost function, and constraints (11c) and (1 1d) disappear. This yields a problem that is exactly Wahba's original problem ''.
The measurement update part of the filter will calculate a g estimate that is the appropriate eigenvector of the cost function's
Hessian matrix. This will happen because g = 0 will hold in the general quadratically-constrained quadratic program, and its
solution algorithm will recognize this as a special case in which it must make use of eigenvectors.

Alternate modeling assumptions yield the recursive QUEST algorithms of Ref. 10. That paper presents two recursive
algorithms, one for use with perfect rate-gyro measurements and one for use with noisy rate gyros whose noise is
approximately modeled as white noise. In both cases these filters can be re-derived by using problem models that have
quaternion dynamics as in eq. (11c), but that have no auxiliary state vector.

In the perfect rate-gyro case, one can show that the cost in eq. (19b) is equivalent to

T T . T T )
J = %‘J(k)Hmeas(k)Q(k) + %[ Dgik-1)d0) ~ Gix-1) ] {H(k-l)"’A(k-I)I} [ Poqpe-1y9) - 9x-1y] + constant (26)

where Hg.p) is the filter cost function's cumulative Hessian matrix at sample k-I. Equation (26) holds because

Dyqk-1) equals the orthogonal @ matrix of eq. (11c) in this situation and because there is no wg-7) process noise. The

optimality necessary condition at sample k-1, {Hpe.1) + A1 M} g-1y =0, can be used to reduce eq. (26) to the following form

T T ]
J = %‘I(k){ Hmeas(k)+¢qq(k-uH(k-1)¢qq(k-1)} Qg * 3 Aw-p) + constant @n

Note that the bracketed expression in this equation constitutes Hp).

This cost form proves that the present algorithm is equivalent to the first recursive algorithm of Ref. 10 under the stated
modeling assumptions. Except for a scale factor, the result in eq. (27) is equivalent to the cost that would be calculated by the
algorithm of Ref. 10. The present filter estimates gg) by minimizing the cost in eq. (26) subject to the normalization
constraint. Reference 10's first algorithm minimizes the cost in eq. (27) and, therefore, calculates the same quaternion estimate
as does the present algorithm.

The second recursive QUEST algorithm of Ref. 10 can be reproduced by the present filter with slightly different
modeling assumptions. Reference 10's second filter has a forgetting factor, p.7)- Itisa number between 0 and / and is used
to de-weight the cumulative measurement error cost terms up to sample time k-/ before adding them to the new measurement
error cost terms at sample time &.

This same forgetting factor effect can be reproduced in the present filter by adding an appropriately modeled process
noise, wg.-;). In this model, one assumes rate-gyro measurements that are numerically integrated to determine Dagk-1) » which



again equals the orthogonal & matrix of €q. (11c). The discrete-time, white-noise rate-gyro measurement error is a 3-
dimensional process noise vector that can produce rotation errors in 3 orthogonal directions. The linearized influence of wy.;)
on the dynamics model is characterized by the 4x3 matrix I gtk-1)- The 3 columns of this matrix are orthogonal to each other

andto @ g4 ;. If the model also assumes that the process disturbance noise information matrix is

Pk-1)
I-pg.p

T T T
Ruwik-1)Ruwii-1) = { }1" q(k-l)%q(k-l){ﬂﬂc-u”(k-ul}d’qq(k-uf gtk-1) 28)

then the cost function in eq. (19b) can be reduced to the form

T T
J = _;-q(k){Hmeas(k)+p(k-1)¢qq(k-1)H(k-1)¢qq(k-1)}q(k) + constant 29)

Except for a scale factor, this is the same sample-k cost as is used in the 2™ filter of Ref. 10, which proves that this
implementation of the present filter is equivalent to it.

THE ESTIMATION ERROR COVARIANCE

There is a direct connection between the square-root information filter that has been developed and the covariance of the
optimal estimate. It is well known that there is such a connection for standard square-root information filters 'S. Three issues
must be dealt with in order to generalize the standard results to the present case. One is system nonlinearity, another is the
statistical model of the QUEST measurement errors, and the third is the quaternion normalization constraint.

The issue of nonlinearity will be dealt with in the usual way for extended Kalman filters. It will be assumed that
accurate calculations can be made using linearizations around g priori and a posteriori estimates. This assumption will hold so
long as the measurement noise and process noise are not "large" compared to the nonlinear terms according to some sensible
definition of "large."

The measurement errors can be modeled statistically by means of the following probability density function for the
measurements b, ..., bmp) conditioned on the quaternion, g

A1, .. bmig] 9] = C exp{-Jouestaglqm)} (30)

where C is a constant. This function defines probability density on the manifold q(Tk)q(k) = I. This probability density

function is sensible. For each measured 5 vector this function gives an error probability density function of
C exp{-2sin?(@2)/c2} where @ is the angle between the measured 5 vector and its true direction and where o is the angular
error's standard deviation. This density function approaches a Gaussian for small o

The constraint that the estimate lie on the manifold q(i)q(k) = I is handled in the following way. First, one recognizes

that this constraint causes the covariance matrix to be singular, with its null space being the normal to the constraint manifold.
Expressed in plain terminology, the estimator knows the quaternion length exactly; so, the variance of the quaternion length is
zero. The remainder of the covariance calculations are carried out in the manifold's local tangent space. Although not valid
for large uncertainties, this approach is consistent with the linearizing assumptions that are used to deal with all other problem
nonlinearities for purposes of calculating covariances.

The rest of the covariance calculation proceeds in a manner analogous to standard square-root information filter theory.

One assumes that the a priori process noise covariance matrix is {Rf,w(k_ DRwwik-1) }'1 . The a posteriori estimation error

covariance at sample k is then the inverse of  the projection of the matrix
[Ragq). 0; Regy, Rexi)JT[Ryqmy, 0; Rxq(). Ruxqr)] onto the subspace that is tangent to the quaternion normalization constraint.
This covariance is calculated as follows. First, one uses left QR factorization to determine 3 quaternion vectors that are
mutually orthogonal to each other and to G-
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where QOps is an orthogonal matrix. The 4x3 matrix Q, which forms the last 3 columns of Ops, is used to perform the
projections that are needed in order to calculate the covariance matrix:

- - -1
T ,pT T T pT
Pq};(k) 0 | _ {Qz 0] 02 (RaqaoRaqto * RuaRea )02 2 ’T*xq(k)Rnﬂc) [er 0] G2)
a9® g
Poxty Pty 0 1 RextyReg @2 RexyRextty 0 1

It is straightforward to show that this covariance matrix is singular, having its one zero eigenvalue along the eigenvector
direction [ g, ;0].

It can be proved rigorously that the filter's a posteriori estimates ) and Xy, are the expected values of g and xg)

conditioned on the measurements up through sample & and on the a priori statistics. It can also be proved that the formula in
eq. (32) gives the correct covariance for the errors in these optimal estimates. The proofs make use of the linearization
assumptions; so, they are valid only for "small" uncertainties. The proofs work with various conditional probability density

functions that define probabilities on manifolds of the form qTq = ]. These probability density functions all take the form

Aq.x) = Cexp{-J(q.x) }, where J(g,x) is one of the least-squares cost functions defined above. Although straightforward, the
proofs are lengthy. They have been omitted for the sake of brevity.

SIMULATION TESTS OF THE ALGORITHM

The algorithm has been tested using simulated data. There are several reasons for simulation testing. One is to check
for any unforeseen difficulties with implementation of the algorithm. Another is to determine whether the algorithm indeed
has better convergence properties than a standard extended Kalman filter. Yet a third reason for testing is to check out the
practicality of the small-angle assumptions in the covariance analysis.

A baseline extended Kalman filter has also been tested in order to determine whether the new filter has an improved
ability to converge. The baseline filter is almost the same as the above filter except that it linearizes the measurement error
equations about the a priori quaternion estimate before it calculates the measurement error. This leads t0 a measurement error
cost function of the following form:

M3

Inea@ = 4 & Lo 110+ Lota- 0 J - 1@+ S 000 (33)

I

This is exactly what a standard extended Kalman filter does with measurement errors if it is implemented as a square-root
information filter. This baseline filter uses the quadratically-constrained measurement update, which optimally enforces
quaternion normalization. Therefore, it is slightly more sophisticated than the extended Kalman filters of Refs. 4, 5,and 7.

Filter Design

A relatively simple filtering case has been tested. It assumes the availability of noisy rate-gyro data and star-tracker
data. The rate gyro is assumed to have biases. The filter's estimation vector is [q; wpias], where apiqs is the estimated rate-gyro
bias vector. It constitutes this filter's auxiliary state vector, x. The dynamic model of the filter consists of a model for the
angular velocity vector between measurement samples and a model for the rate-gyro bias dynamics. The angular velocity
model that gets used in eq. (12) is:

=i

(Q/t,' Lk-1), é(k-l): Cbbias(k-!)' W(k-l)} = Org(k-1) + [t(k [(k ; J[a’rg(k)—wrg(k-l)] - a}bias(k-l) = Wark-1) (34)
)~ tk~1)
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where aygq) is the rate-gyro measurement at sample k and W) constitutes the first 3 elements of the 6x/ process noise

vector wy_y). The dynamic model of the rate-gyro bias vector is a random walk:
Dpiastk) = Dbiask-1) ¥ Wak-1) (335)
where wy;.;) constitutes the last 3 elements of the wg_;) process noise vector; i.e., W) = [ Wag-1); Wog-1)]-

Truth Model

This filter has been tested with data from a simulated truth model. The simulated truth model is that of a rigid-body
spacecraft in a low Earth orbit. The truth model simulates Euler's equations and the quaternion kinematics. It includes
gravity-gradient torques and white-noise disturbance torques. One scenario tests a spin-stabilized spacecraft that undergoes
nutations. It has a spin period of 50 sec and a nutation period of 504 sec. The other scenario tests a nadir-pointing gravity-
gradient stabilized spacecraft that librates at frequencies on the order of the orbital frequency.

The truth model includes a model of the star tracker and of the rate gyro. The star tracker is assumed to have a limited
field of view; it has only a 50 radius. For the spin-stabilized spacecraft, the center of the star-tracker's field of view points
approximately perpendicular to the nominal spin vector. For the nadir-pointing spacecraft it points towards the nominal zenith
direction. Similar to what was done in Ref. 13, star-tracker measurements have been simulated by randomly generating a
direction vector in the star tracker's field of view at each measurement sample. That direction and the spacecraft's true attitude
have been used to generate the "known" inertial direction vector for that attitude measurement, 7;%). The b;) measured vector
has been calculated by taking the original randomly generated direction vector and adding a random direction error component
that has a Gaussian distribution with a standard deviation of /0 arc sec per axis. In the case of the spin stabilized spacecraft,
the star tracker makes one measurement every 15 seconds, which is about 3 times per spin period. For the nadir-pointing
spacecraft, the star tracker measures the direction to one star once every 58.5 seconds, or 100 times per orbit.

The measurement model for the rate gyro includes errors due to white noise and errors due to a bias that can drift as a
random-walk. Two different intensities have been used for the white-noise component of the rate gyro error: 0.029/hour? and
0.10°hour'?. The intensity of the white noise that drives the bias drift has been set at (0.70°/hour)hour? for all cases in this

paper.

It is important to choose small enough sample rates for the rate gyros. The sample rates used in this study are once
every 0.625 sec for the spin-stabilized spacecraft and once every 2.92 sec for the nadir-pointing spacecraft. Lower sampling
rates can cause systematic estimation errors due to the truncation error that is inherent in the filter's angular rate model, i.e., in

eq. (34).

There are sample times with no measurement update. This happens because of differences between the star-tracker
sampling rates and the rate-gyro sampling rates. In the spinning spacecraft case there is one star-tracker measurement for
every 24 rate-gyro measurements. In this case, tg) — tu.;) is fixed at 0.625 sec, but mp, varies. It is 0 for 23 out of 24 samples,
and then it is / for the 24/ sample. The nadir-pointing spacecraft has a t) — tk-1) of 2.92 sec, and mgp) switches from 0 to /
every 20" sample.

Results

This filter shows very good performance under nominal conditions and when subjected to large initial attitude
uncertainty. As an example, Fig. 2 shows attitude error results for a filtering case that used simulated data for the spinning
spacecraft. This case starts with a moderate initial attitude error; the error is / /¢ in magnitude and directed about an axis that is
430 away from the nominal spin axis. Its initial rate-gyro bias error is small, with a magnitude of 1.4/hour, and its rate-gyro
error's white-noise intensity is 0.029/hour?. Figure 2 shows the total attitude error — the total rotational error between the a
posteriori attitude estimate and the true attitude. It also shows the filter's predicted a posteriori standard deviation for this
quantity. It is clear from this plot that the filter does a good job of attitude determination and that its covariance calculations
are consistent with the actual errors.

A number of cases have been run in order to test the new filter's ability to converge from large initial attitude errors. In
each of these cases, the baseline extended Kalman filter has been used to filter the same data. This provides a point of
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comparison that allows one to determine whether the new filter can converge in situations where the baseline filter cannot.
Figures 3 and 4 present results for one of these cases, a case that considers the nadir-pointing spacecraft. Both filters were
given the same large initial errors in the attitude and in the rate-gyro bias estimates. The initial attitude error was / 80¢ about
the spacecraft's roll axis, and the initial rate-gyro bias error was 1009/hour about the pitch axis. To make matters even worse,
the filter was given erroneous standard deviations for its a priori per-axis attitude errors and rate-gyro bias errors, 0.1° and
Io/hour, respectively. The rate-gyro's white-noise error component had an intensity of 0.70o/hour'” for this case.

The baseline extended Kalman filter fails to converge from this poor first guess, but the extended QUEST attitude filter
does very well. The extended QUEST filter converges to an attitude error of less than 3¢ in its first 500 sec of filtering, and its
rate-gyro bias error gets reduced to a magnitude of under 39/hour after one orbit of filtering.

Even with substantial decreases in the initial errors, the standard extended Kalman filter still has problems. If the initial
attitude and rate-gyro bias errors are reduced by 25% from those used in Figs. 3 and 4, then the standard filter still fails to
converge. With a 33.3% reduction — to an initial attitude error of 7200 — the standard filter finally converges, but its attitude
error is still 3.80 after one orbit. When the extended QUEST filter is used for this same 1200-case, it reduces the error to less
than 3.8¢ right at the outset and to about 0. /¢ in less than half an orbit.

In almost all large-initial-error cases considered, the extended QUEST filter displayed better performance than the
extended Kalman filter. In many cases the extended Kalman filter failed to converge when the extended QUEST filter
succeeded. There was one case where the extended Kalman filter converged and the new filter failed to converge, but this was
a spurious case in which the extended Kalman filter converged only by accident. Even when the extended Kalman filter did
converge, it almost always took much more time to achieve a good estimate than did the new extended QUEST fiiter.

Another difference between the two filters is in their sensitivities to tuning when initial errors are large. The extended
Kalman filter can be made to diverge or converge by changing the initial a priori state error covariance or by changing the rate
gyro's white-noise error intensity. In at least one case, the relationship between convergence and the covariance tuning proved
to be counter-intuitive. The extended QUEST filter, on the other hand, exhibits insensitivity to changes in covariance tuning.

It must be noted that a poor initial guess can have detrimental effects on the new extended QUEST attitude filter,
especially if the initial filter covariances are not set properly. This can be seen if one looks at the filter's predicted estimation
error standard deviations for the case that produced Figs. 3 and 4. The initial attitude error is /,800 times larger than the initial
standard deviation for this quantity. The filter does not get the actual attitude error to be less than 70 times the filter's a
posteriori standard deviation until after 4,500 sec of filtering. The rate-gyro bias behaves the same way: for the whole first
orbit, the actual rate-gyro errors remain more than an order of magnitude larger than the filter's a posteriori standard deviation.
If the measurement and process-noise covariances in the filter were close to the real system's actual values, then this problem
would go away after a long time. In the interim, before the covariances settled down to their correct values, this discrepancy
would cause the actual errors to be larger than they would have been with better tuning.

Even though the new filter has an increased ability to converge from initial attitude errors, it still can fail to converge if
the error in its initial estimate of the auxiliary state vector is too large. With 780 initial attitude errors for the nadir-pointing
spacecraft, as in Figs. 3 and 4, the filter successfully converged from an initial rate-gyro bias error magnitude of 2,4000/hour,
but an initial error of 4,0000/hour caused divergence. At a 3,2000/hour initial error, the filter did not converge after one orbit,
and it was unclear whether it would ever converge. Similar behavior has been found for the spinning spacecraft, where
divergence has been observed for initial rate-gyro bias errors above /2,0000/hour.

This demonstrates that the filter may be unable to converge from large initial errors in its auxiliary state vector, x. Any
failure to converge is due to the linearization assumption that was made in eq. (14). Probably the only way to ensure that a
filter cannot diverge is to do batch filtering with numerical iteration, as in Ref. 12.

The new filter's convergence properties are probably sufficiently robust for almost any mission. Even though the filter
can diverge for a wrong initial guess of x, it appears to have a very large domain of convergence in the examples that have
been considered. In the nadir-pointing case, convergence has been achieved for an initial rate-gyro bias error that is more than
10 times as large as the orbital rate. In the spinning spacecraft case, the filter successfully converged even when the initial
rate-gyro bias error was 48% of the spacecraft's spin rate.

The extended QUEST attitude determination filter is capable of working with a system model that propagates its
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estimate of the attitude rate vector using Euler's equations. None of the examples included in this section use such a model
because of limits to the scope of this effort. If Euler's equations are used, then filter convergence may depend on not having
too large of an initial error in g, contrary to what has been found in the above examples. This could happen because of g's
effect on gravity-gradient torques or on other terms in Euler's equations. Although the filter might be more prone to diverge, it
still might out-perform a standard extended Kalman filter in this regard. Of course, more work is needed in order to
investigate this issue.

CONCLUSIONS

A new spacecraft attitude determination filter has been developed. It operates on vector attitude data. Its goal is to
incorporate QUEST-type measurement updates into an extended Kalman filter framework in hopes of improving the filter's
convergence robustness in the face of large initial attitude errors and nonlinear effects. The extended filter's state vector uses a
quaternion attitude parameterization and can include other elements such as angular rates or rate-gyro biases. The filter uses
standard square-root information filtering techniques wherever possible. The only exception is that the quaternion part of the
measurement update involves the solution of a quadratically-constrained quadratic program, as in the original QUEST
algorithm. The quadratic cost function gets modified in this case to include the effects of a priori information and the effects
of the other state vector elements.

The new algorithm has proved successful at increasing the range of initial attitude uncertainties from which the filter
can converge to the true attitude. In an example that involved star-tracker and rate-gyro measurements with rate-gyro bias
estimation, the extended QUEST algorithm was able to converge from simultaneous initial errors of 180° in attitude and
2,400°/hour in rate-gyro bias. Larger initial rate-gyro bias errors can cause divergence, but for the cases considered, the size of
the initial attitude error has no effect on the filter's ability to converge. Such properties will be important to spacecraft
missions that require an increased degree of autonomy and, therefore, an increased domain of convergence for the attitude
filter.
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Abstract

In this paper, an approach to increase the degree of autonomy of flight software is proposed. We
describe an enhancement of the Attitude Determination and Control System by augmenting it with self-
calibration capability. Conventional attitude estimation and control algorithms are combined with
higher level decision making and machine learning algorithms in order to deal with the uncertainty and
complexity of the problem.

1 Introduction

The goal of our project is to enhance the degree of autonomy of the Attitude Determination and Control
System (ADCS), enabling it to perform accurately without human intervention for an extended period of
time. The approach is to evolve ADCS one step at a time into an autonomous system in a natural way
dictated by actual needs. The purpose of this paper is to describe the first step in our program: the
development of the Autonomous Attitude Sensor Calibration (ASCAL). The intention is to demonstrate
ideas and concepts of on-board autonomy evolving from the existing control system, and not to develop
another technique of attitude sensor calibration. A conventional ADCS uses data from available attitude
sensors to estimate the attitude of the spacecraft. To meet mission pointing accuracy requirements, the
attitude sensors must be calibrated for instrument biases, scale factors and misalignments immediately after
launch and as needed thereafter. Traditionally, the calibration process is performed by attitude support
specialists. often requiring elaborate procedures involving attitude consistency checks, data sampling and
trending, and diagnosis expertise. A system that is able to perform all of these functions autonomously will
have to deal with a large degree of uncertainty due to errors in the model parameters, incomplete model,
measurement errors and human decision making. One of the new interdisciplinary areas currently emerging
to tackle problems of this nature is the Intelligent Control Theory (Refs. 1-3) which combines conventional
control theory with decision making and leaming tools developed in the field of Artificial Intelligence.
Following Tsypkin (Ref. 4), the necessity for applying learning arises in situations where a system must
operate in conditions of uncertainty. Another active area of research is Hybrid Control Theory (Refs. 5, 6),
which deals with systems that involve both continuous and discrete data structures. The discrete data may
arise from sudden changes in the physical systems, from singularities in an incomplete dynamic model, from
computer round off errors, or from actions controlled by higher level decision making. The discrete data
often force the control system to make a choice and switch from one control law to another.

The system architecture adopted in this program has three layers: Execution, coordination. and planning.
Each layer is organized further into a hierarchy of components, with the lowest level being the most precise
and higher levels operating with less precise information and hence requiring an adaptive approach or
learning approach. The choice between the adaptive or learning approach depends on the level of
uncertainty of the problem. The adaptive approach may be sufficient for problems with less uncertainty.
However, there are many different types of uncertainty, more complex uncertainty such as: when an
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inconsistency exists in attitude estimation which of the available sensors are more reliable than the others,
which parameters in the sensor measurement model are unreliable. This type of uncertainty may have to be
learned slowly through experience. This is precisely the type of situation in which the learning automaton
can prove most effective. Leaming in this case takes place over a long time scale relative to the normal
operation of the system.

The execution level is the lowest level. It involves conventional control algorithms and interfaces to the
spacecraft via sensors and actuators. The highest level consists of planners and schedulers. In a mature
system, with more than one autonomous subsystems performing different functions, there may be only one
planner and scheduler that manages plans and schedules tasks for all subsystems. The coordination level is
the middle level, interfacing between the other two levels. This level consists of decision making tools,
learmning algorithms, etc. Some of these tools may be used to substitute for conventional algorithms that are
too costly or too sensitive to change or uncertainty. For instance, in this paper, we apply machine learning
algorithms to control the calibration process instead of using batch or sequential processes to compute sensor
residuals. The leaming algorithm should be independent of the physical system and of any lower level
process involved. More precisely, there are many state estimator algorithms to choose from. For each
calibration task scheduled. only a few of these algorithms will be chosen. These choices should have no
effect on the performance of the leaming algorithm.

The layer and hierarchical structure of the architecture allows us to build on an existing control system, such
as ADCS, step by step beginning with ASCAL which provides attitude sensor self-calibration functionality.
As development progresses. higher level adaptation is made each time a new subsystem with new
functionality is added to ADCS, such as gyroscope self-calibration functionatity. The new subsystem can be
operated and tested independent of previously developed subsystems.

Sensor calibration problems can be viewed as a dynamical system with uncertainty in the measurement
model parameters. There are several algorithms for sensor calibration (Refs. 7-10). The choice of algorithm
depends on the type of sensors being considered. Typically, it is left to the attitude experts to select
appropriate methods for the task. However, to demonstrate the ideas and concepts of ADCS enhanced
autonomy, we will focus on only one algorithm. In a later stage of development, when the concept of self-
calibration has matured, additional algorithms may be added as new subsystems in the hierarchy. Expert
knowledge on algorithm selection would be coded as rules in a rule-base system in the mid-level. The rule-
base will select an appropriate algorithm when a calibration task is scheduled.

An automated system such as ASCAL is useful for mission cost reduction. It automatically performs
routine monitoring and trending and stores experts' knowledge of sensor and instrument calibration to be
reused for future events. Moreover, ASCAL may be useful for constellation of satellites, each having
similar pointing requirements. Our future extension is to apply the same architecture described here to
other flight software such as orbit determination and navigation systems, tracking, and formation flying.

This paper is organized as follows. The main architecture of the system is described in Section 2. The main
focus of this paper, the calibration component, is described in Section 3. The technology used in the
calibration component is a heuristic leamning automaton. The prioritization for the calibration process is
based on the Local Dempster-Shafer theory developed in [1]. This is described in Section 4. The
Coordinator and Planner level are discussed in Section 5 and 6 respectively.

2 ASCAL Architecture

Figure 1 shows the architecture of ASCAL. The execution level consists of an attitude estimator and
predictor. The coordination level determines which sensor parameters need adjustment, what should their
upper and lower bounds be, and which algorithms are appropriate. This level also includes the learning
component in the calibration process. The planning level plans and schedules calibration tasks, making sure
that computing resources are available and avoiding possible conflicts with other tasks.

It is natural to consider extended state vectors consisting of an attitude vector and erroneous sensor
parameters. However, this will generally introduce additional non-linearity into the models and could make
the problem intractable or too costly to run on-board. To minimize the computational cost, we apply
machine learning techniques to adjust these parameters guided by past experience. Attitudes and errors are
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computed each time sensor parameters are adjusted. Each cycle of the computation contributes new
information on the convergence of the solution. This knowledge will affect the way these parameters are
adjusted.

Naively, attitude accuracy is monitored by estimating attitude using different combinations of gyros and
attitude sensors, uncalibrated versus calibrated. The attitude residuals obtained from the computed attitudes
are predicted using a conventional prediction algorithm. When it is discovered that the attitude residual will
exceed a threshold sometime in the future, it means there is an inconsistency in the estimated attitudes. The
attitude inconsistencies are then diagnosed and one or more calibration goals are created. These goals are
expressed as which measurement parameters need adjustment, the range of adjustment and the most
appropriate calibration algorithm. The calibration process is then planned and scheduled. In a spacecraft
where one or more sensors need regular calibration, or where computing resources are limited, the predictor
may be replaced by a periodic schedule managed by the planner/scheduler component. The calibration
process is iterative, where the erroneous measurement parameters are adapted on the basis of system
experience in such a way that the attitude inconsistencies converge to Z€0.
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3. Estimator and Predictor

When a calibration process is scheduled, the coordinator will set a goal following a guideline stored in its
knowledgebase, perhaps as a set of rules. A typical goal would be to calibrate a certain set of parameters.
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The calibration procedure depends on the type of sensors on-board. If there are enough redundant sensors
the standard technique is to compute attitudes from a few different sets of sensors and compare the results. If
the pairwise difference between these attitudes have zero mean, then there is no inconsistency, and all of the
sensors are accurate (relative to each other). Generally, there are one or more sensors that are used as
standard. They are the ones that have already been calibrated, or the ones with higher accuracy. We will call
a set of sensors used in an attitude estimation process a fest set. Generally, one or more of the test sets
contain sensors to be calibrated, and at least one of the test set contains accurate sensors. If there are no
redundant sensors, or not enough available sensors to create at least two test sets, then the calibration
procedure usually involves more in depth analysis. In this paper, we assume there is at least one sensor with
high accuracy, such as a Charge Coupled Device (CCD) star tracker, enabling us to calibrate other sensors
against them. Such a sensor is frequently chosen as the standard frame of reference and generally does not
need calibration. In this paper, we assume that there is such sensor on-board.

Before the calibration process starts, a number of test sets are identified, with at least one of the test sets
containing the sensor(s) to be calibrated and the other test sets containing the standard sensor, calibrated
gyros, or other high accuracy sensors. The coordinator, via its rule-base component, will also select a
suitable estimator algorithm, for instance an attitude dynamic model and a measurement model for each
selected sensor.

Let @ denote a test set, x, the attitude vector computed using measurements from all sensors in @. The
attitude dynamics and the corresponding measurement model are

X, =, (D) +u, (@)
Zok =G, (P> x, (6 )N+ w, (t,), (1)
where g, is a sensor in g, P, is its model parameter vector. Note that, in this algorithm, each P, is

assumed constant during each estimation cycle. They are not members of state variables, however, their
values will be adjusted by the learning system described in the next section.

In the following, we give a simple example of a state estimator and trend predictor to demonstrate how the
learning system can be used in a calibration process. The inconsistency trend between attitude vectors
associated with two different test sets g and 4 is the difference T,, = x, — x, . The state space model for the

inconsistency trend and its slope S, are
Tab (tk+l ) = Tub (tlc ) + Sub (tk ) + Vub (tk )
Sab(th»l ) = Sub (tk ) + a)ab (t‘; )
Define a new state vector
Xab = [Tab - Wab Sab]
Then we have the following state-space model
Xab(tkﬂ ) = AXub(tk ) + uab (tk )

2
T, (k)y=HX ,(k)+w,(k+]) @
with
Vab(tk)= w(tk*l)_w(tk )’ uub z[wab a)ub ]”
1 1
and A= . H=[1 0]
o)

In system (2) T,, plays the role of output vector with preferred state T,, = 0. All of the process and

measurement noises are assumed to be white Gaussian with zero mean. The systems (1) and (2) become a
two-stage problem. Given a set of sensor parameters, attitudes are computed either by a batch least square
or a sequential method. System (2) predicts the inconsistency trend. Here we write it as a single step
predictor, but a multiple step predictor can also be done.
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4 Learning Systems

The heart of a leaming system is the leamning algorithm which is the mechanism used to adapt the
probability distribution. Based on the environment response and the action selected by the system at time ¢,
it generates p(t+1) from p(t). There are two levels of learning in ASCAL. When a calibration goal is set,
the coordinator must determine the sensors, algorithms, and parameter ranges needed to initialize the
calibration process. This selection is based on the past experiences. In particular, the parameter ranges are
chosen in such a way that the region is void of any singularity and at least one solution exists. This
knowledge can be given a priori by attitude experts, and maintained by a learning algorithm. The second
level of learning is in the calibration process, where attitude residuals are computed, convergence tested,
and parameters adjusted sequentially. We assume that an appropriate metric is defined on the state space.
The selection of parameter adjustment is a learning process based on the rate of convergence (or
divergence) of the attitude residuals during the previous two (or more) cycles. Assume there are /i Sensor
parameters to be adjusted, and each parameter can be increased or decreased by a fixed quantity. This

I

with a + or — sign to denote if it is increased or decreased. For instance, an action corresponding to an
increase in a and decrease in b is represented by the signed set {a,,b_}. These H actions are prioritized
by a probability or belief vector given by the Local Dempster-Shafer (LDS) (Ref s 11, 12).

To get a feel for the learning algorithm based on LDS, we will now describe a simpler algorithm based on
the Dempster-Shafer (DS) theory (Refs. 13, 14), modified to suit our calibration problem. For a more in
depth discussion of the LDS theory see Ref. 12. DS theory is defined on a set of n elements. A mass
function on the action set H is a probability function that assigns a degree of belief to each action. More
precisely, the mass function satisfies the following conditions

Y m(A) = 1, for A& and m(d) =0

ARH

n
TR . . L .
corresponds to H = 2 2 (—) possible actions, where each action is a set of parameters, each associated
i=0

Two mass functions m, and m, on H can be combined into a single mass function m, ® m, by the
Dempster composition rule:
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m ®m,(A) = 2mwMMWM—2%wMNm,me®

BuC=4A BUC=D
m, ®@m,(J)=0.

The belief function associated to the mass function m is defined to be the cumulative probability
distribution on #:

b:H =[0I} b(A) =Y m(B)

BpA

where the union between two signed sets is defined as the union of all signed elements, followed by
removing every subset of the form {a +»d_ } for some parameter a. The belief function is used to prioritize

the actions for the learning algorithm. If an action is chosen and the resulting attitude residuals decrease
with a faster rate or increase with a slower rate, then the system reprioritizes by applying the positive
learning algorithm described in Ref 12. This will strengthen the previous prioritization. Conversely, if the
previously chosen action is performed in the opposite manner, then the system reprioritizes by applying
negative learning algorithm, which will lessen the degree of belief on the failed action.

In general, a learning system may have a hierarchical structure. In this case, the selection of the action set
should also have a hierarchical structure. To support this structure, a hierarchical flavor of DS theory can be
defined in a natural way. The action selection is performed in a sequence of steps. First, a highest level in
the hierarchy of the action set is selected, followed by a lower action. This procedure is followed until the
last level of the action set 4. This hierarchical structure will clearly reduce the size of the search space, and
hence enhance the performance of the automata.

The learning process discussed above is the simplest application of the (modified) DS theory to learning
automata. In practice this algorithm can be enhanced in several different ways to increase the performance
and robustness of the learning system. Our possible future research topics in this areas are: Localization of
the action space (H) by applying LDS theory instead of DS theory. This will reduce the complexity of the
search and increase the performance of ASCAL. Instead of keeping the step size of parameter modification
constant, we may consider it as a function of the rate of convergence computed from the previous cycles.
The function that works will guarantee the convergence of the solution. The use of hierarchical or
multilevel learning systems accelerates the leamning process (more so for the initial rate of learning) and
simplifies the structure of the learning system. The leaming system discussed above is an active research
area with many applications in intelligent and hybrid control problems.

5 Coordinator

In some sense. the coordinator is a process manager whose responsibility is to monitor the physical
subsystem it is responsible for, i.e. the ADCS, and predict if any problem, i.e. an attitude inconsistency, will
occur. If a problem is predicted, the coordinator will identify the source of the problem and create goals to
solve it.

The responsibility of the coordinator consists of two parts: monitoring/diagnosis and pre-calibration. The
monitoring/diagnosis components monitors the state of health of the ADCS by periodically computing and
trending relative attitude residuals using multiple test sets. When an attitude inconsistency is predicted, the
diagnosis component determines which sensor parameters are likely to be unreliable based on attitude data
that displays the trends. The result of the diagnosis is the degree of unreliability, a probabilistic quantity,
assigned to each sensor parameter involved in the trending process. Underlying the diagnosis process is the
uncertainty handler based on the LDS theory, (Ref 11). When this is done, the coordinator creates goal to
calibrate the problematic parameters, and submits the goal to the planner.

When a calibration process is scheduled the pre-calibration tasks begin. First, based on the degree of
unreliability, a collection of test sets is formed, and the bounds for the Sensor parameters are computed.
Based on the sensors involved, attitude dynamics and measurement models are selected, and a state-space
system is defined for each test set. Finally, the coordinator also determines any a priori knowledge the
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calibration process may need, including the initial probability distribution for the learning system to use as
priority assignment in the learning process. It is convenient to use the degree of unreliability as the initial
probability distribution. However, other expert knowledge the system may have can be combined with the
degree of unreliability using a modified Dempster combination rule. The coordinator performs these tasks

using decision making capability such as a rule-base.

6 Planner & Scheduler

This component may be responsible for several autonomous systems. For ASCAL, the planner/scheduler is
responsible for scheduling sensor calibration. It should be aware of available sensors, i.e. those with target in
field of view, and related resources. This means the spacecraft must be sufficiently equipped with a star
catalog, and Sun, Earth, and Moon ephemerides. The system must also be able to perform some maneuver

planning needed for gyroscope calibration, or to sample selected targets throughout the field of view.

In this version of ASCAL, the calibration process uses live data from attitude sensors on-board, to avoid
dealing with attitude history data management which is a formidable problem of its own. However, as a
trade off, the planner will have to be smart enough to avoid conflicts among spacecraft activities, to manage
resources such as available sensors and computer time. A simple solution is to find a quiet window of time

when there is no important activity on-board and devote all attention to the calibration process.

7 Conclusion and Implementation Status

This study is the first phase of our program to extend the degree of autonomy of on-board flight software.
The consequences of failure are catastrophic for an attitude control system. If the attitude control system
fails for even a brief period, the spacecraft may tumble, pointing the solar arrays away from the sun,
antennas away from the earth, and sensitive instrumentation in a potentially damaging direction. Such a
control system failure may or may not be recoverable. Nonetheless, virtually all spacecraft have fully
autonomous, onboard attitude control. Failure to properly calibrate the sensor parameters would lead t0
inaccuracies in attitude estimation, and would in turn lead to attitude control system failure. Sensor
calibration is traditionally done from the ground, because the standard procedures and algorithms are
storage and computationally intensive. In this paper, we propose a non wraditional approach, using learning
automata and heuristic priority assignment to adjust sensor parameters until all inconsistencies converge o
within an acceptable limit. Human intervention is called for if this process does not converge, and if the
diagnoser cannot resolve the problem. In this case, the lessons learned should be added into the
knowledgebase for future use. It is important to design the learning algorithms so that they are independent
of the sensors being calibrated or of changes in the environment. This is key for autonomous attitude
sensor calibration in future missions.

The next natural step towards higher level on-board automation is to add data management capability to
ASCAL. Calibration process can be performed using historical data without disturbing other activities,
excepl computer resources. To archive measurement data for the calibration process ahead of time would
require, the coordinator can be augmented with a data processing component. It is responsible for data pre
or post processing, data smoothing, and/or shifting. Generally, measurement data are sensitive to some
spacecraft's activities such as maneuvering. The planner/scheduler must be aware of these activities. With
this knowledge obtained from the planner/scheduler, the data processor may avoid the disturbed data, so
that relatively clean data for the past. say 24 hours, may be stored and ready to be used when a calibration
process is scheduled. This problem suggests that high level autonomy is necessary for autonomy system
development such as ASCAL.

Other possible future development is autonomous orbit determination and control, orbit keeping,

maneuvering, and formation flying. Machine learning approach described in this paper is a generic tool
that is likely to be useful in these applications.
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ANGULAR-RATE ESTIMATION USING STAR TRACKER MEASUREMENTS

R. Azor*, Itzhack Y. Bar-Itzhack™, Julie K. Deutschmann?,
and Richard R. Harman®

ABSTRACT

This paper presents algorithms for estimating the
angular-rate vector of satellites using quaternion
measurements. Two approaches are compared, one
that uses differentiated quaternion measurements to
yield coarse rate measurements which are then fed
into two different estimators. In the other approach
the raw quaternion measurements themselves are fed
directly into the two estimators.

The two estimators rely on the ability to
decompose the non-linear rate dependent part of the
rotational dynamics equation of a rigid body into a
product of an angular-rate dependent matrix and the
angular-rate vector itself. This decomposition, which
is not unique, enables the treatment of the nonlinear
spacecraft dynamics model as a linear one and,
consequently, the application of a Pseudo-Linear
Kalman Filter (PSELIKA). It also enables the
application of a special Kalman filter which is based
on the use of the solution of the State Dependent
Algebraic Riccati Equation (SDARE) in order to
compute the Kalman gain matrix and thus eliminates
the need to propagate and update the filter
covariance matrix. The replacement of the elaborate
rotational dynamics by a simple first order Markov
model is also examined.

In this paper a special consideration is given to
the problem of delayed quaternion measurements.
Two solutions to this problem are suggested and
tested.

Real Rossi X-Ray Timing Explorer (RXTE) data
is used to test these algorithms, and results of these
tests are presented.

I. INTRODUCTION

In most spacecraft (SC) there is a need to know
the SC angular-tate. Precise angular-rate is required
for attitude determination, and a coarse rate is
needed for attitude control damping. Classically,
angular-rate information is obtained from gyro
measurement. Over the past few years, there has
been a tendency to build smaller, lighter and cheaper
SC. One means of building less costly SC is to use
cheaper sensors or even fewer semsors. One very
expensive sensor most spacecraft will use is the
gyro. An alternative means of estimating a high
fidelity rate would provide a significant cost savings
as well as provide for angular rate estimation during
high rate anomalies which might be beyond the
range of the purchased gyros.

There are several ways to obtain the angular-rate
in a gyro-less SC. When the attitude is known, one
can differentiate the attitude in whatever parameters
it is given and use the kinematics equation that
connects the derivative of the attitude with the
satellite angular-rate in order to compute the latter'.
Since SC usually utilize vector measurements for
attitude determination, the differentiation of the
attitude introduces a considerable noise component
in the computed angular-rate vector. To overcome
this noise, the computed rate components can be
filtered by a passive low pass filter. This, however,
introduces a delay in the computed rate'. When
using an active filter, like a Kalman filter (KF), the
delay can be eliminated™.

Another approach may also be adopted for the
problem of angular-rate computation where the
vector measurements themselves are differentiated.
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This approach was used by Natanson* for estimating
attitude from magnetometer measurements, and by
Challa, Natanson, Deutschmann and Galal® to obtain
attitude as well as rate. Similarly, Challa, Kotaru and
Natanson® used derivatives of the earth magnetic
field vector to obtain attitude and rate.

All these methods use the derivative of either the
attitude parameters or of the measured directions
which normally determine the attitude parameters.
Another approach is that of using the attitude
parameters, or the measured directions themselves,
as measurements in some kind of a KF. In this case
the kinematics equation that connects the attitude
parameters, or the directions, with their derivatives
are included in the dynamics equation used by the
filter thereby, as will be shown in the ensuing, the
need for differentiation is eliminated™®.

New sensor packages have been introduced
lately that yield the SC attitude in terms of the
attitude quaternion’. Therefore it is possible to use
the quaternion supplied by such sensors as
measurements and, as mentioned before, eliminate
the need for differentiation. In this paper we
investigate this possibility.

As mentioned, in the ensuing we will apply two
special KFs which make use of the SC angular
dynamics model; therefore, by way of introduction,
in the next section we present the development of
the SC dynamics model, and in Section III we
present the two filters. For comparison purposes, in
Section IV we treat the approach where the angular-
rate is still extracted from derivative but here we
pass the resultant noisy quaternion through the two
active rather than through a passive filter as was
done in Ref. 2. The other approach, where the raw
quaternion measurements themselves are fed into the
filter, requires the addition of the quaternion to the
state vector which is comprised of the angular-rate
vector. This is treated in Section V. In Section VI we
consider the case where the filter dynamics is
drastically simplified by reducing the dynamics
equation of the SC to a first order Markov process.
The issue of quaternion normalization is presented in
Section VII, and in Section VIII we solve the
problem of measurement delay. The last section of
this work is the Conclusion section.

II. FILTER DYNAMICS MODEL

The main dynamics model is that which
describes the propagation of the SC angular velocity,
@. The angular dynamics of a constant mass SC is

10

given in the following equation
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ol+h+ox(lo+h)=T (N
where gT =[0,,0,,0,] , Iis the SC inertia tensor,
h is the momentum of the momentum wheels, and T
is the external torque operating on the SC. The
components ®,, ©, and ©, are the three

y
components of the sought angular-rate vector, @, of
the SC body with respect to inertial space when
resolved in the body coordinates. Eq. (1) can be
written as

@ = I"[(Ie + h)x]o + I"(T - h) 9}

where [(I@ +h)x] is the cross product matrix of the
vector (Io + h) . Define

F@) =1"[(Ilo +h)x] (3)
and
u(t)=I"(T - h) @)
then Eq. (2) can be written in the form
@ = F(@)o +u(t) )

As was shown in Ref. 2, there are 8 primary models,
and infinite linear combinations of them, which
express Eq. (1) in the form of Eq. (5).

Eq. (5) describes the SC correct dynamics;
however, we usually do not know the exact values of
I, T, h and its derivative, therefore we do not know
the exact relationship between & and these

elements. We express our lack of knowledge by
adding a stochastic process to the dynamics equation
of Eq. (1). We assume that this stochastic process,
W(t), is a zero mean white noise process. The
resulting model which is used by the estimator is

@ =F(@0 +u(t) + w'(t ©)

If we denote @ by x, then Eq. (6) can be written as

X =F(x)x + u(t) + w'(1)

7
where obviously

F(x) =I"'[(Ix + h)x] ®
For the time being we assume that we measure the
angular-rate; that is, x, therefore the measurement
equation is

®

z, =Hx, +v,



where
H=I, (10)

v, is a zero mean white measurement noise, and

1, is the third dimensional identity matrix.
III. ANGULAR-RATE ESTIMATION

As mentioned in the introduction section, we use
two filtering algorithms to estimate the angular-rate.
These algorithms are described next.

The dynamics equation presented in Eq. (7)is a
nonlinear differential equation due to the term
F(x)x . A standard filter for this case is the Extended
Kalman Filter (EKF). One can also apply the
Extended Interlaced Kalman filter’ where three
linear KFs are run in parallel. Other possibilities
which are applicable to the form of non-linearity
presented in Eq. (7) are the Pseudo-Linear Kalman
(PSELIKA) filter and the State Dependent Algebraic
Riccati Equation (SDARE) filter which were used
successfully in Ref. 2. In view of their performance,
the latter two filters are used in this work too.

[IL1 The Pseudo-Linear Kalman (PSELIKA)
Filter

The PSELIKA filter algorithm disregards the
non-linearity and treats the dynamics system as if 1t
were just a time varying system, consequently, the
ordinary KF algorithm is applied. First, the
continuous differential equation (7) expressing the
SC dynamics is discretized and then the KF
algorithm is applied as follows. First evaluate:

W', =E{w'(t,)W'(t)") (11)

R, =E{v,v}} (12)

and choose an approximate value for the initial
estimate of the rate vector. In the absence of such
initial estimate, choose X, = 0. Next, determine P,,

the initial covariance matrix of the estimation error
according to the confidence in the choice of x,. The

recurrence algorithm is then as follows.
- time propagation:

Let A, be the discrete dynamics matrix
obtained when F(x) of Eq. (8) is discretized, and
let u, be the discrete deterministic input signal, then
propagate the state estimate according to:
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X, =A%, Ty, (13.2)

and the covariance matrix according to:

P, =AP, A +W', (13.b)
- measurement update:

Compute the Kalman Gain as follows:

K. = I’M,,KHT[I-]ZF'M,,‘HT +R,,]" (13.¢)
Update the estimate according to:
% e = X0 FKLZ0 -Hx,..,.] (13.d)
and update the covariance matrix using:
P, = [1- K, HIP AL - K HT (13¢)

+Kk~le¢lKIol
IIL2 The State Dependent Algebraic Riccati
Equation (SDARE)

The continuous-discrete-time SDARE filter
which was used in Ref. 2 was based on the work of
Cloutier, D’Souza and Mracek'"'?, Pappano and
Friedland”, and Mracek, Cloutier and D’Souza'.
That continuous-discrete-time  filter for the
continuous-time dynamics and the discrete-time
measurement is as follows (see Ref. 2).

As with the PSELIKA filter, choose an
approximate value for the initial estimate of the rate
vector. In the absence of such initial estimate,
choose again X, =0.

- time propagation:

Propagate the state estimate according to:

~

% (14)

k+l/k =Akxk/k +uk

- measurement update:

At the measurement updating time, t.., solve the
following algebraic Riccati equation for P, :

A(Xy a0 )P + Pk+1AT Eyarx)
- Pk+IHTR:+l}{Pk+l + Wi =0
(15.2)



and compute the gain matrix:

Ky =B H'RY, (15.b)
Finally compute the updated state estimate:
ik‘l/lol = ik*l/k + Kk»l [zkﬂ - Hikd/k] (15‘0)

IV. THE FILTERED QUATERNION-RATE
APPROACH

As mentioned before, it is possible to derive @,
a crude estimate of ® using the quaternion first
time-derivative'?; however, the resultant estimate is
noisy. If ®, is passed through a passive low-pass
filter the noise may be filtered out at the expense of
a delay'. Here we investigate the quality of the
filtered rates when the two active filters described
before are used to filter @, . First we show how o,
is derived from q, the differentiated quaternion. As

is well known [see e.g. Ref. 10], the quaternion
dynamics equation is

q=3Qq (16)
where
0 0, -0 o
-0, 0 Qo o
Q= Y a7
o, -0 0 o
-0, -0, -o, 0

It is also known [see e.g. Ref. 1] that Eq. (16) can be
written as

3 =1Qo (18)
where
q., i q,
Q - q, q, -q, (19)
-q, q, q.
-9, -9, —q,
Define the pseudo inverse
QU =Q'QY'Q (20.a)
where T denotes the transpose. Note that
Q'Q=1, (20.b)

where I, is the fourth dimensional identity matrix.

From Egs. (18) and (20.2) it is easily seen that a
rough estimate of the rate vector can be computed as
follows
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0, =2Q'q (21.2)

which in view of Eqs. (20) can be written simply as

0, =2Q7q (21.b)
The dynamics equation for the estimator was
introduced in Section II (see Eq. 7); thus, in view of
Eq. (21), like Eq. (10), the measurement equation
which corresponds to that dynamics model is

o, =H o+v, (22.a)
where
(22.b)

and v, is a zero mean white noise.

The Pseudo-Linear Kalman Filter (PSELIKA)
and the State Dependent Algebraic Riccati Equation
(SDARE) filter were used to obtain the angular-rate
from quaternion observations using the Quaternion-
Rate approach. The data which was used to test this
approach was real measurements downloaded from
the RXTE satellite, which was launched on Dec. 30,
1995. We chose a segment of data starting January 4,
1996 at 21 hours, 30 minutes, and 1.148 sec. The
quaternion which was used was based on the SC
attitude as determined by its star trackers. Fig. 1
presents @, the nominal angular-rate, Fig. 2 presents

the error between @ , the raw angular-rate, and o,

the nominal rate In order to quantify the error, a
single figure of merit (FM) is computed. First the
average square error of each component is computed

— T
P=lfeldt

as follows e =x1-
0

1=x, y, z. This

computation yields e;,e} ande!. Then the FM is

computed as FM = ,fel +e’ +e’ . In order to exclude

the transients we set t, =100sec . It was found that

FM(2) = 7.3998-107% deg/sec where FM(2) is the
FM of Fig. 2. Fig. 3 presents the estimation error
when the PSELIKA filter was applied to o . It was
found that FM(3) =1.5311-107 deg/sec. Finally,

Fig. 4 shows the same when the SDARE filter was
used and it was found that

FM(4) =1.4550-10 deg/sec. As indicated by
FM(2), the computed angular-rate, _, particularly its

X component, was rather noisy. When either the
PSELIKA or the SDARE filter were applied to o, ,

other than a few spikes, the resulting ® was



smoother. In this example there was no real
difference between the performance of the two
filters (see FM(3) and FM(4)). As expected, the
computation of @, using Eq. (21) produced a noisy
estimate due to the differentiation of the measured
quaternion which was corrupted by measurement
noise, and the application of the PSELIKA filter to
this o, filtered out most of the noise. When the
SDARE rather than the PSELIKA filter was applied
to ®,, the filtered estimate of the angular-rate was

visually identical. In other words, the effect of the
application of the SDARE filter was practically
identical to that of the PSELIKA filter.
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V. THE QUATERNION AUGMENTATION
APPROACH

Although we also tested the Quaternion-Rate
approach described in the preceding section, in this
work we are mainly interested in estimating @ using
the measured quaternion itself rather than its
derivative. However, the quaternion is not a part of
the state vector of the system (see Egs. 6, 7). One



solution to this problem was examined in the
preceding section. Another solution is the
augmentation of the quaternion with the angular-rate
state of Eqgs. (6, 7). For this we can use the
quaternion dynamics equation given in Eq. (16) and
obtain the following model which augments Egs. (6)
and (16)

y=G'(y)y +e(t) + g(t) (23)
where

B
y=|" (24.a)

q

F 0

G'(y) { (09) s QJ (24.)
e(t) = [“(t)} (24.c)

0
g(t)=[w;(°} (24.4)

The measurements of the quaternion are taken at
discrete time points; therefore the measurement
model is a discrete one. The discrete measurement
model that corresponds to the dynamics model of

Eq. (23)is
o}
Q..1=Cl:'} +v, 25)
9
where q,, is the measurement at time t, ,
0001000
0000100
C= 26
0000010 (26)
0000001

and v, is the measurement noise at that time.

An inspection of the matrices G'(y) of Eq.
(24.b) and C of the last equation reveals that even
when © is constant this pair is deterministically

unobservable. This problem can be overcome though
using the fact that Eq. (16) can be written as Eq. (18)
which can also be written as

«'1=[%Q10][9J @
q
therefore Eq. (23) can be transformed into

¥ =G(y)y +e(t) + () (28.2)
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where

(28.b)

G(y)=[F@ 0]

1Q 0

We note that the measurement equation (see Eq. 25)
is unchanged although the dynamics matrix of the
system changes from G'(y) to G(y). Unlike the
pair G'(y) and C, the pair G(y) and C is not
necessarily deterministically unobservable. In fact,
the results which are presented in Fig. 5 show that
the pair is observable even when w is time varying.
Moreover, in the computation of Q which is needed
in Eq. (24.b) we use our best estimate of w . At least
initially, this estimate may be way off yielding a
wrong  and, consequently, a wrong G'(y). On the
other hand, in the computation of G(y), given in
Eq. (27.b), we use Q rather than Q, and since Q is
based on the computed q which is fairly accurate,
we obtain a pretty accurate G(y). In other words,
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Fig. 5: The Estimated Angular-Rate, &, After

Applying the PSELIKA Filter to the
Augmented Model.

not only is the pair {G(y), C} observable, the use
of G(y) yields a more accurate filter model than
does G'(y). The FM of Fig. 5 was found to be

FM(5) = 6.1839-10"* deg/sec. When comparing

Fig. 5 to Figs. 3 and 4 it is realized that the addition
of q to the state vector yields a better filter. It is



noted that the level of the spikes present in Figs. 3
and 4 was reduced when this filter was used.

While v, , the measurement noise vector, can be
assumed to be statistically independent over time, its
components are correlated with one another;
moreover, it cannot be assumed that v, has a
constantly zero mean, consequently we model the
measurement noise as

Ve = Ve TV (29)
where between the measurement points , k-1, k, k+1,
the noise component, v, , changes according to

v, =-Nv, +} (30)

It is further assumed that v,, is a zero mean white

noise process whose covariance matrix contains, in
general, non-zero off diagonal elements. As usual,
the covariance matrix of the white noise vector, H ,

which drives v ., ,is selected"” to fit the covariance
matrix of v ,,, . That matrix too may have non-zero
off diagonal elements in order to generate the correct
covariance between the components of v, .

Since the measurement noise has a non-white
component, one needs to augment the non-white
state with the existing state vector to form a new
augmented state. The resultant model is then as
follows

x=Fx+f+w 31
where
(@ F@) 0 O
x=|q | (32.a) F={{Q 0 0 | (32b)
v, 0 0 -N
(u w'
f=|10} (32.0) w=|0 (32.d)
0 B,
Since
Qoi =9 T Vi TV (33.2)
then the corresponding discrete measurement
equation is
de = ka#l + vz.kol (33b)
where
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(33.09)

VI. A SIMPLIFIED FILTER MODEL

The dynamics models which were used in the
preceding section can sometimes be drastically
simplified by exchanging the SC non-linear
dynamics model with a simple first order Markov
model. This approach, which is common practice in
target tracking, was applied recently to attitude
determination’ and is considered here. The
simplified filter dynamics equation takes the form

-T7 0 O
F=[+Q 0 O (34.a)
0 0 -N
The dynamics model is then
x =Fx +f+w, (34.b)
where
x; =[o; 1q; |V]] (34.0)
f is as before and
w, =[w]]| 07 |u] (34.d)

The covariance matrix of w; has to be computed"’

and tuned. When the quaternion measurements are
used to update the filter every second there is almost
no visible difference between the use of the elaborate
rotational dynamics model and the simplified Markov
model. However if the updates occur at longer
intervals there is a remarkable difference between the
two cases. Fig. 6 presents the angular-rate estimation
error when the elaborate angular dynamics is used
and the PSELIKA filter, which is used to estimate the
rates, is updated at an arbitrarily 30 second rate. The
FM computation of the error presented in Fig. 6

results in FM(6) = 1.7975-107% deg/sec . When the

elaborate model is replaced by the Markov model, the
error in the resulting estimated rate is unacceptable.
This is seen in Fig. 7 where the angular-rate
estimation errors for this case are presented. This is
also indicated by the large FM of this case where

FM(7) = 3.9136-107% deg/sec. It should be noted



that in the computation of FM(6) and FM(7) we set
t, = 200sec. Again, this was done in order to avoid

the transients. In summary, the simplified model was
shown to be unacceptable.
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Applying the PSELIKA Filter to the
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VII. QUATERNION NORMALIZATION

Since quaternions are inherently normal, the
quaternion which is estimated using the above
algorithms has to be normal, however, these
estimation algorithms do not assure normalization;
therefore, occasionally, the estimated quatemion has
to be normalized. Several algorithms were suggested
for it in the past'®!” which were compatible with the
KF estimator. The accuracy achieved when using
those algorithms was about the same for all of them.
In this work we chose to apply the Magnitude
Pseudo-Measurement (MPM) normalization
algorithm'” for the ease of its implementation. This
algorithm is presented next.

The states which constitute the four elements of
the quaternion are x,,x,,X%,andx, therefore the

sum X; + X; + X! + X has to be equal to 1. In order

to assure it we assume the existence of a “magnitude
measuring device” that “measures” 1; that is,
z =1 (35.a)

oorm k+1

On the other hand we assume that the corresponding
measurement model is

sorm.k+l

z

[0’ O’ O’ x‘,kol ’ xs.k+l 4 x6,k-0| ? x7.kol ’0’ 0’ O’ O] X+v

oorm, k+1

(35.b)
which can be written in the form
z =H

X+vV (35.0)

norm,k+1 norm norm,k+1

where, obviously
Hiom =00,0,0,%4 4015 X5 401> X6k+1> X7,k41,0,0,0,0]

(35.d)

It is possible now to perform an ordinary
measurement update where the filter is fed with the
“measurement” 1, and where the measurement
matrix is given in Eq. (35.d). The value of r

pom,k+| ?

the variance of the “measurement” error v__,.,,

can be adjusted to yield satisfactory results. We note
that indeed this algorithm forces normality on the
estimated quaternion without violating the KF rules.



VIII. DELAYED QUATERNION
MEASUREMENTS

The device that yields the quaternion
measurements’ computes the quaternion after a star
search, therefore the quaternion is obtained with a
time delay. Fig. 8 presents the time points where
measurement updates take place and the size of the
delay time, A, which, for reasons explained later, is
divided into subintervals of length &. The filter has
to supply the best estimate of the angular-rate to the
SC attitude control system (ACS) atpoints t,, t,,,

etc. However, the
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Fig. 8: The Relative Location of the Delayed
Quaternion Measurement Along the
Time Line.

measurement which is obtained at t,,, is of the
quaternion that existed at t,,,; that is, at time
point t,,, — A . There are several ways to process the

delayed measurement in order to obtain an improved
estimate at t,,,. In the ensuing we present two

algorithms. According to the first algorithm, which
we name Updating Before Propagating, we perform
a measurement update of the filter at time point
t when the real time is already t,,, , and then

meas,k+l ?
propagate the outcome to time point measurement
where the information is passed on to the ACS. It is
also possible to first propagate the state estimate and
covariance matrix (when PSELIKA is used) to the
time point t,,; , project the measurement too to this
time point, and only then perform a measurement
update. We name this second algorithm Updating
After Propagating. Both algorithms are further
explained in the following.

VIIL.1 Updating Before Propagating

The sequence of events concerning the
propagation and the updating of the state estimate
when using this algorithm is presented in Fig. 9.
Since 1 is known (see Fig. 8 for the meaning of 1),
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it is possible to propagate the state vector and the
covariance matrix from time t, to t,.., and stop

the propagation there until the real time reaches t,,, .
The state estimate is propagated from t, t0 t o

using the following discretized version of Egs. 31
and (32)

e™®” 0 0 |i®,,,0() e,(-)
LQF @™ -1 I 0 || 4.0 |=]4a()
0 0 e™ ||V, .00 V(=)

uk
+o| (362

0

and, when using PSELIKA, the covariance matrix is
propagated using Eq. (11.b) noting that

e"" 0 0
A, =|+QF' @™ -] T 0 (36.b)
0 0 eV

Note that when the SDARE filter is used, there is no
covariance matrix propagation. (One needs not
worry about a possible singularity of F(w) which
may appear in the 2,1 element of the discretized
dynamics matrix in Eqs. (36) because F'(w) is
included in this element only in order to enable the
expression of the term in a closed form. If this term
is expressed in a power series form, the inverse of
F(@) is canceled out).
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Fig. 9: The Evolution of the State Estimate Over One
Time Cycle.
(a) updated vectors. (b) propagated vectors.

(b)..

When the real time reaches t,, the measurement
that was performed at time t,,, is available,

therefore it is possible to use the state and
covariance matrix (when PSELIKA is used), which



have been propagated to t..y,,, and the new

measurement to perform a measurement update at
time t which yields

meas.k+l

iaa () =16 401 a (k1o (D VT eioa (DT
37)

Following the update the state estimate and
covariance matrix can be propagated to the real time,
t,.., for use as an input to the ACS. The state
estimate is propagated N times using the small step
size, & (see Fig. 7), and when PSELIKA is used, the
covariance matrix too is propagated N times up to
t,.,. This propagation results in X,,(~), and when

PSELIKA is used, also in P, (-). Note that the

measurement update and the subsequent propagation
take place only after the real time reaches t,,, and

since these operations take time, they cause a delay
in the transfer of data to the ACS which is supposed
to occur at precisely t,, . We assume, however, that

the computation time and the resulting delay are
negligible. If this is not the case there are ways to
compensate for this delay.

VIIL.2 Updating After Propagating

The sequence of events concerning the
propagation and the updating of the state estimate
when using this algorithm is presented in Fig. 9.
Here first the state estimate is propagated to

(@ ... %,(+) %, (+)
NSy ;;..-A(—\ T
W50 TR RO
i i > Time
t t

k+1

Fig. 10: The Evolution of the State Estimate Over
One Time Cycle.
(a) updated vectors. (b) propagated
vectors.

and if PSELIKA is used the

covariance matrix is also propagated. Then when the
real time reaches t,_,, the measurement of q,,,_, is

time point t,,

available. It is also propagated to t,, (not shown in
Fig. 9) and an update is performed there.
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For reasons which will be clear later define a
state vector x’ as follows

x, =[o; |q] | v}, T (38)

As will be shown later, the measurement update at
time t, yields

L=, WIaOI VL@ (39

This state estimate as well as the covariance (when
PSELIKA is used) are propagated first by t© to

tpensnt - 1he€ propagation is done like in the previous
algorithm (see Egs. (36)). (Note that although v

is propagated T seconds, it does not reach the time
point t ). Next the propagation continues from

to t,,, by the small time steps §,
+i-8 for i=0,1,N-1, &

is recorded as (t;,) . Next the measurement at time

Lk-a

meask+]

time point t

meask+l

and at time points t

meas.k+1

point t is projected to time point t,, . Observe

meas,k+|

that in view of Eq. (33.2) one can write

(40)

Qoewcxrt = DQecs ¥ Vicacs T Vareca

where q,,, .., is the measurement obtained at time

t.. of q attime that is, of q,,,, . The

tmeas.kol 4

VeCtors V..., and Vikw-a €, respecnvely, the

measurement-noise vectors v,and v, which exist at
time t,, —A. Denote the transition matrix of q

from t to t,, by @ (A), then, using the

meas.k+1

recorded w(t,;), the latter can be computed as

i=N-1

2 )=1] g

i=0

(41)

and the measurement can be projected forward from

t to t,,,, as follows

qm.kol = CDq (A) qmas,kﬂ

weas k+1

(42)
From Egs. (40) and (42) it is clear that

Qo =P8 Q1 + QA Vo, + P (A V0,
(43)

When examining the terms on the right hand side of
Eq. (43) one realizes that



(DQ(A) Qs = Qi (44)

Since the differential equation which describes the
propagation of v, is non homogeneous, then
CDq(A) Viker-a # ¥ika (45)

therefore Egs. (43) and (44) are written as follows

gkd
Qoro = [0, 1L [@(A) 1] Qu [+ PUB) Vo
vl,k»l-A
(46)
Define
zm.kd = qm.kol (473)
Xy, =[@r, 15 | Vi ]’ (47b)
H, o =0, 11, [P(A)] (47.c)
and
Y_kﬂ = Q(A) vZ.kol-A (47d)
then Eq. (46) can be written as
zm.hl = Hm.kﬂx;ﬂ +!k¢l (48)

According to Eq. (47.d), R, the covariance matrix
of v,,,, is computed as follows

R, =@ (AR, D (8) (49)

where R,,,, is the covariance matrix of v,
weko - Using Egs. (47.a), (47.c) and

(49) we can now perform a measurements update
using either PSELIKA or SDARE. This yields

evaluated at t

£,(4) =[01., (M4, (D ¥ e DT (50)

and &, (+) can now be fed into the ACS as
required. It is clear now why in Eq. (38) the new
vector x° was defined. Note that X contains
vectors of different times, but this poses no problem.
In fact this situation occurs in certain smoothing
algorithms. One has to be aware though of the fact
that the off diagonal elements in the covariance
matrix which relate v, to © and to q, yields the
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covariance of the estimation error of vectors at two
different time points.

IX. CONCLUSIONS

In this paper we examined algorithms for
estimating the angular-rate vector of satellites using
quaternion measurements without differentiation.
The notion examined in this work is based on the
ability to obtain quaternion measurements directly
from star tracker(s). For the sake of comparison we
also examined the approach of extracting the
angular-rate from quaternion differentiation. Both
approaches utilize a Kalman filter. In fact two filters
were examined. One was the PSEudo-Linear
KAlman (PSELIKA) filter and the other was a
special Kalman filter which was based on the use of
the solution of the State Dependent Algebraic
Riccati Equation (SDARE) in order to compute the
Kalman gain matrix and thus eliminate the need to
propagate and update the filter covariance matrix.
The two filters relied on the ability to decompose the
non-linear rate dependent part of the rotational
dynamics equation of a rigid body into a product of
an angular-rate dependent matrix and the angular-
rate vector itself. This non-unique decomposition
enabled the treatment of the nonlinear spacecraft
dynamics model as a linear one and, consequently,
the application of the PSELIKA filter. It also
enabled the application of the SDARE filter.

When using the quaternion measurements to
obtain angular-rate without differentiation, the
kinematics equation of the quaternion has to be
incorporated into the filter dynamics model. This
can be done in two ways. It was shown that only one
way can be used because only this way yields an
observable system.

Real spacecraft data was used to test the
suggested algorithms. As expected, when rate deter-
mination was based on quaternion differentiation,
the resulting angular-rate was noisy. When either
one of the filters was used, the noise was suppressed
without causing delays in the estimated angular-rate
components.

The replacement of the elaborate rotational
dynamics by a simple first order Markov model was
also examined. It was found that while the use of
such a simple model was sufficient when frequent
measurement updates were possible, it was totally
inadequate when only sparse quaternion measure-
ments were available.

It was explained that the device that yields the
quaternion measurements computes the quaternion
after a star search, therefore the quatermion is
obtained with a time delay. However the filter has to
supply the best estimate of the angular-rate to the SC



attitude control system on time. In this work two
algorithms were presented to overcome the delay
problem. According to the first algorithm, which we
named Updating Before Propagating, a measurement
update of the filter is performed at the time when the
measurement is obtained and then propagated to the
time point where the information is passed on to the
attitude control system. In the second algorithm the
state estimate, the covariance matrix (when
PSELIKA is used), and the measurement are first
propagated to the time point where the angular-rate
has to be passed on to the attitude control system,
and only then a measurement update is performed.
We named this second algorithm Updating After
Propagating.

This paper presents results which indicate that a
high performance attitude and rate estimation
algorithm can be implemented using star trackers
and without the use of costly high performance
gyros. These results should be considered for all
future missions with high performance rate
estimation requirements and for those missions
which are looking for a high performance gyro-less
backup.
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ATTITUDE DETERMINATION USING TWO VECTOR MEASUREMENTS

F. Landis Markley
Guidance, Navigation, and Control Systems Engineering Branch, Code 571
NASA’s Goddard Space Flight Center, Greenbelt, MD 20771

ABSTRACT

Many spacecraft attitude determination methods use exactly two vector measurements. The two vectors are typically the unit
vector to the Sun and the Earth’s magnetic field vector for coarse “sun-mag” attitude determination or unit vectors to two
stars tracked by two star trackers for fine attitude determination. TRIAD, the earliest published algorithm for determining
spacecraft attitude from two vector measurements, has been widely used in both ground-based and onboard attitude
determination. Later attitude determination methods have been based on Wahba's optimality criterion for n arbitrarily
weighted observations. The solution of Wahba’s problem is somewhat difficult in the general case, but there is a simple
closed-form solution in the two-observation case. This solution reduces to the TRIAD solution for certain choices of
measurement weights. This paper presents and compares these algorithms as well as sub-optimal algorithms proposed by
Bar-Itzhack, Harman, and Reynolds. Some new results will be presented, but the paper is primarily a review and tutorial.

INTRODUCTION

Suppose that we have measured two unit vectors b, and b, in the spacecraft body frame. These can be the unit vectors to an
observed object like a star or the Sun, or some ambient vector field such as the Earth’s magnetic field. We consider only unit
vectors because the length of the vector has no information relevant to attitude determination. Each of these unit vectors thus
contains two independent scalar pieces of attitude information. The spacecraft attitude is represented by a 3x3 orthogonal
matrix A, i.e. ATA = I, the 3x3 identity matrix. The attitude matrix must also be proper, i.e., it must have unit determinant, sO
it is an element of the three-parameter group SO(3). Euler’s Theorem states that the most general motion of a rigid body with
one fixed point is a rotation about some axis. This shows explicitly that SO(3) is a three-parameter group, since the three
parameters can be taken as the rotation angle and two parameters specifying a unit vector along the rotation axis. Thus two
unit vector measurements determine the attitude matrix, in general; in fact they overdetermine it.

It is also necessary to know the components of the two measured vectors r, and r, in some reference frame. The reference
frame is usually taken to be an inertial frame, but this is not necessary. One can use a rotating frame such as the frame
referenced to the orbit normal vector and the local vertical. The attitude matrix to be determined is the matrix that rotates
vectors from the reference frame to the spacecraft body frame. Thus we would like to find an attitude matrix such that

Ar, =b, (1a)
and
Ar, =b,. (1b)

This is not possible in general, however, for equation (1) implies that
b, -b, = (Ar)-(Ar,) =/ A"Ar, = ', =r-r,. ()

This equality is true for error-free measurements, but is not generally true in the presence of measurement errors. It will be
seen in the following that all reasonable two-vector attitude determination schemes give the same estimate when equation (2)
is valid.

1t is clear from simple counting arguments that the two independent scalar pieces of information contained in a single vector
measurement cannot determine the attitude uniquely. More concretely, if the attitude matrix A obeys equation (1a), then so
does the matrix R(b,,¢,)AR(r.9,), for any ¢, and ¢, , where R(e, ) denotes a rotation by angle ¢ about the axis e. This line
of argument also makes it clear that the attitude matrix is not uniquely determined if either the pair b, and b, or the pairr,
and r, are parallel or antiparallel.

The earliest published algorithm for determining spacecraft attitude from two vector measurements was the TRIAD
algorithm'?. This algorithm has been widely used in both ground-based and onboard? attitude determination. The two vectors
are typically the unit vector to the Sun and the Earth’s magnetic field vector for coarse “sun-mag” attitude determination or
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unit vectors to two stars tracked by two star trackers for fine attitude determination. Recent developments in star tracker
technology have produced star trackers that can track 5, 6, or even 50 stars at a time. For attitude determination using more
than two vectors, optimal estimators based on a loss function introduced by Wahba are appropriate*. However, Bronzenac
and Bender have shown that the n vectors from a small-field-of-view star tracker can be replaced by an average vector
without significant loss of precision®. With this approximation, the two star tracker case, even with multiple stars tracked in
each star tracker, can be treated as a two-vector-measurement problem.

With this motivation, we survey solutions to the two-vector measurement problem, beginning with TRIAD. We then consider
the optimal solution of Wahba's problem. After this, we look at sub-optimal algorithms have been proposed by Bar-Itzhack
and Harman® and by Reynolds™®. We compare the various algorithms for both accuracy and computational effort, and finally
present conclusions.

TRIAD

The TRIAD algorithm, introduced by Black in 19642, is based on the following idea. If we have an orthogonal right-handed
triad of vectors {v,, v,, v;} in the reference frame, and a corresponding triad {w,, w,, w;} in the spacecraft body frame, the
the attitude matrix

A=[wiiw, iws v v, ive T = wov] +w,vl +wvT 3)
will transform the v; to the w; by
Av,=w, i=1213 4

The TRIAD algorithm forms the triad {v,, v,, v} from r, and r,, and the triad {w,, w,, w3} from b, and b,. Incidentally,
TRIAD can be considered either as the word “triad” or as an acronym for “TRIaxial Attitude Determination.” The triads can
be formed in three convenient ways. First, it is useful to define the normalized cross products

1, = (5 x5)/lg x| (5a)
and
b, = (b, xb,)/b, xb,]. (5b)

We note that r; or b is undefined if the reference vectors or the observed Vvectors, respectively, are parallel or antiparallel.
This is the case noted above in which there is insufficient information to determine the attitude uniquely. If this is not the
case, two of the TRIAD attitude estimates are

Ap =br +b,r] +(b, xb,)(r, xx,)" (6)
and
A =b,r] +b,r] + (b, xb,)(r, x1,)". (7

These estimates treat the two measurements unsymmetrically. In fact Apr =b, and Ap,r, =b,, but

Ant, =by (5 1) +(b, xby)[(r, X1)-r,]= (1, -r,)b, +[b, - (b, -b,)b, ]|r; x 5|/jb, xb,| (8)
and
Arty = by (r - y) + (b, xby)[(r, X 1) ] = (1, '1;)b, +[b, — (b, -b,)b, ]|r; x5,|/|b, xb,|. 9

Thus the estimate A;; emphasizes the first measurement and Ap, emphasizes the second. It’s not difficult to see, though, that
both Ar, and Ap, satisfy equations (1a) and (1b) if b,-b, =1, 1,.

The third form of TRIAD treats the two measurements symmetrically. We define the unit vectors
r,=(n+ rl)/lr2 +r,|= (r, +l'1)/«/2(1‘“'1 ‘T,), (10)
r.=(5-r)/|, - r1[ =(r, - rl)/,/2(l -5L,), an

and b, and b_ similarly. It is easy to see that r, is perpendicular to r_, b, is perpendicular to b_, and also that r;=r,xr_and
b; =b,xb_. Thus {r, r_, r;} and {b,, b_, b;} are orthogonal triads, and the third TRIAD estimate is given by

Ars=b. el +b_r” +(b, xb_)r, xr)". (12)
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This estimate treats the two observations symmetrically, and gives Ap,r, =b, and Ay T =b_, but

1 1+r-r l1-r-r
Anr, =b,(r, 5)+b_(r. 1) =§[ ’bell-_b:(b‘ +b,)+ Jl—_-ﬁ;—z (b, —bz)] (13)
Ar =b.(r. ) +b_(r 5) == 1460 4 gy 2200 4 —b,) (14)
382 = MeWe B2 = \F- 2 2 1+b1'b2 1 2 l_bl'bz 1 2 .

Again, it’s not difficult to see that Ap; satisfies equations (1a) and (ib) if b, -b, =1, - T;.

and

All three TRIAD estimates satisfy Ay 1y = b,,fori=1, 2, 3. From this and the above observations, it is clear that Apy, Ap, and
Ap, give identical estimates if equation (2) is valid, since they provide the same mapping of a basis {r,, I';, r3} in the reference

frame to a basis {b,, b,, bs} in the spacecraft body frame.
THE OPTIMAL SOLUTION

In 1965, Grace Wahba, then a graduate student at Stanford University on a summer job with IBM, proposed the following
problem*: Find the orthogonal matrix A with determinant +1 that minimizes the loss function

LA)=+Y,alb, - Arf . (15)

where {b;,} is a set of n unit vectors measured in a spacecraft’s body frame, {r;} are the corresponding unit vectors in a

reference frame, and {a;} are non-negative weights. We can rewrite equation (15), using the invariance of the trace under
cyclic permutations, as

Lyt S ol ) 5,45 = (3, ) e, w

where

B=Y abr . )

It is obvious that the attitude matrix that minimizes the loss function is the proper orthogonal matrix that maximizes
trace(AB”). Almost all solutions of Wahba’s problem are based on this observation. The original solutions solved for the
attitude matrix A directly, but most practical applications have been based on Davenport's q-method”, which solves for the
attitude quaternion'®"". Shuster’s QUEST algorithm, in particular, has been widely used'?. Shuster showed a simplification in
the two-observation Wahba problem, but the first explicit closed-form solution was presented in reference 13.

We begin by noting that the matrix B has the singular value decomposition'**®
B=USV", (18)
where U and V are orthogonal matrices, and S s diagonal;
S = diag(s,.5;.53)> 19
with
525,25, 20. (20

In the two-observation case, it is clear from equation (17) that B has rank at most 2, and therefore
det B=15,5,5;=0. 21

Equations (20) and (21) show that
;=0 (22)

in the two-observation case. We shall take advantage of some resulting simplifications in this case. The general
n—observation case is treated in references 13 and 14.

Since 55 = 0, we are free to choose the sign of the last column of U and of V so that both of these matrices have positive
determinants. We shall assume that this is the case. Now

trace(AB”) = trace(AVSUT) = trace(WS) = s, W, + 5, W, (23)
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where we have again used the invariance of the trace under cyclic permutations, and
W=UTAV. (24)
Now using the Euler axis/angle parameterization for W = R(e, ¢) gives'®!!
trace(AB") = 5,[cos @ + €] (1 - cos )] + 5, [cos @ + €2 (1 - cos )] = sl + 5,65 +cos@s,(1-e) +s,(1-€2)].  (25)
This is clearly maximized for cos¢ = 1, which means that W = . Thus the optimal attitude is given by
A, =UVT. (26)

Equation (25) shows that the minimum of trace(ABT) is unique unless s, = 0. The vanishing of s, is the sign in the optimal
algorithm that the observations are not sufficient to determine the attitude. We shall see below that this is related to the
parallelism of the reference frame or body frame vectors.

The singular value decomposition is rather expensive computationally, so we look for a simpler way to compute A,,. We note
that the classical adjoint, or adjugate, (the transposed matrix of cofactors) of B is given in terms of the SVD by

adj B = U[diag(0,0, 5,5,)]V7. (27)
We also note that

B BB = Uldiag(s},s3,0)]v". (28)
These allow us to write .

(¥ ~5,5,)B+AadjB" — BB"B = As;5,UV" = Ass,A (29)

opt ?
where
A=s +5, = trace(ABT). (30)

We can compute the optimal attitude without actually performing the expensive SVD of B if we can find an alternative means
of computing the quantities appearing in equation (29). Direct computation from equation (17) gives
adj B = a,a,(b, xb,)(r; x,)" = gy, |b, X b, |Jr, x r,| brf . (31

Then we see from equation (27) that
5,5, ="adj BT"F = alaq|b1 ><b2”rl xrzl, (32)

where M. denotes the Frobenius (or Euclidean, or Schur, or Hilbert-Schmidt) norm'$!¢
M|, = [trace(MMT)]". (33)

We note from equation (32) that s, = 0 if either of the cross products vanishes, as was mentioned above. A little effort is
required to show that

A =5t +57 +25,5, =||BJ, + 2a,a,]b, xb,[|r, x n|=al+al+ 2axa?[(b, -b,)(x, -r,) +|b, X b, ||, x r2”‘ (34)

In the two-observation case, A is just the positive square root of the quantity on the right side of equation (34); finding A in
the case of more than two observations requires solving a quartic equation. To complete the analytic derivation, we need to
evaluate
2
T
BB'B= Y aaab,(r 1,)b, b)r’ 35)

ijk=1
Combining all these intermediate results with much vector algebra gives the final equation for the optimal attitude estimate:
A, =(a /A)brx +(b, xb,)(r, xr,)"]+ (a,/A)[byr;) + (b, xb,)(r, X1;)" ]+ b,r! . (36)

It is interesting to note that this expression has a unique limit as either a, or a, goes to zero, with A equal to the non-zero
weight in the limit. This is true even though Wahba’s loss function of equation (15) does not have a unique minimum in
either limit, since it effectively only includes a single observation. In fact, the limit of the optimal estimate is the TRIAD
estimate Arp, as a, goes to zero, and A, as a, goes to zero. It is also true, but more difficult to see, that the optimal estimate is
equal to A for equal weights, a, = a,.
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The optimal estimate maps the two reference vectors as

Ay = (@ /DALT +(a, [ M)A = (4, /)b, +(a, /A){(rI -1,)b, +[b; = (b, -b,)b, 1|, X r,|/|b, x b2|} (37
and
AT, = (@[ MART, + (@ [MAn, =(a[A)b, + (4 M{(x, -x,)b, + (b, - (b, )b, ], X ,|/Ib, by} (38)

The main point to note about these equations is that the optimal attitude estimate maps both r, and r, into the plane spanned
by b, and b,. It’s clear from the loss function of equation (15) that this has to be the case; any out-of-plane component
would be non-optimal.

In the case that b, -b, =T, - T, equation (34) for A simplifies to A = a, +a,, and the optimal estimate is
A, =(@An + a,Ap) (@ + ay)- 3%
Since Ap, and Ap, are equal in this case, we see that A, is equal to their common value, also.

Mortari has found an alternative representation of the closed-form solution to the two-observation Wahba problem that is
equivalent to the solution found here "’

OPTIMIZED TRIAD

Bar-Itzhack and Harman® have proposed using equation (37) even when b, b, #r,-r,.In general, this estimator is not
optimal, nor is the resulting attitude estimate exactly orthogonal. In order to produce a more nearly orthogonal attitude matrix,
they employ the first-order orthogonalization step

Agr =%l(a + a,) (@A + RAR) + (@, + a2)(alA;-l + a'zArrz)—l] (40)

They call the resulting estimator “Optimized TRIAD.” This estimate has the correct limits of An and Ap, as a, Or a, tends to
zero, respectively, but is not the same as Ap, for equal weights. It avoids the computation of A that is required for the optimal
estimate, but requires the inverse of a 3x3 matrix.

There is an alternative way to orthogonalize the matrix computed by equation (37) when b, -b, # r, -r,. This is to extract a
quaternion from the attitude matrix and then normalize the resulting quaternion. It is well known that the attitude matrix
computed from a normalized quaternion is guaranteed to be orthogonal‘o'”"“. The extraction of the quaternion requires a

square root, but it is often desirable to compute a quaternion for data transmission or storage, because it stores complete
attitude information in four components instead of the nine required for the attitude matrix.

DIRECT QUATERNION METHOD

All the methods considered so far compute the attitude matrix. If a quaternion is desired, it can be extracted from the attitude
matrix. However, it would be desirable to avoid this indirect and somewhat costly procedure. Reynolds has proposed a very
simple estimation algorithm that computes a quaternion directly”®.

We first present some background information on guaternions to establish our conventions. A more complete discussion can
be found in reference 11. A quaternion g has a vector part q and a scalar part g, which we write as

g=1q,9,] 41)

This is similar to Reynolds’s notation except that we use square brackets rather than parentheses. A unit quaternion (i.e., 2
. . 2 . . .
quaternion with |q| + qf =1) can be used to represent an attitude matrix, which rotates a vector by

Alg)v = (q? —laf v +2(a- Va-2a.axV). 42)
We will follow Shuster’s convention for quaternion products'!, writing
p®q=Ip.p,)®a.q,)=[g,p+P.a-P*Q P.g, ~P-ql: (43)

This differs from the historical convention in the sign of the cross-product, and has the advantage that the order of quaternion
multiplication is the same as the order of attitude matrix multiplication:

A(p®q) = A(p)A(q)- (44)
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The quaternion corresponding to the rotation matrix R(e,9) is

g= ,:e sing, cos g] 45)

The derivation of the direct quaternion method begins with the observation that the quaternion that maps the reference vector
r, into the body frame vector b, using the minimum-angle rotation, is

1
———— (b, xr,1+b,- 4
r_—_z(l"'bl'l'l)[ | XK, 1°n] (46)

The most general matrix that maps r, into b, is R(b,,0,)A(q.y,, ) R(x;,0,) , where ¢, and ¢, are arbitrary angles of rotation
about b, and r,, respectively. This general rotation has the quaternion representation

[ b;sin % cos 2 0 s
= b _by £ ®[b, x ,1+Db, - ®{ = Yr
9 2(1+b,-r,)[ , sin 5 cosz] [b, xr, n] "151"2 cosz

L]

I inint
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=—l—l:cos£(bl xrl)+sin£(b, +r), (1+b, -r,)cosg],
J2(1+b,-r) 2 2 2
where ¢= ¢, + ¢, . By parallel reasoning, the most general quaternion that maps r; into b, is given by
1 v . w]
= —==————==|cos—(b, X)) +sin—(b, +r1,), (1+b, -1,)cos — 48
% 2(1+b2.r2)[ 7 02 XB)+sin (b, 1), (L+b, 1) cos 48)

for some angle . The vector part of g, is perpendicular to b, — r;, and the vector part of g, is perpendicular to b, — r,. Based
on this observation, Reynolds proposed to look for a quaternion whose vector part is perpendicular to both b,-r and b, -r,.
The vector part of g, will be perpendicular to b, — r, if we choose

cos(¢/2) = {[(b, xr,)- (b, —r,)]* +[(b, +1,)- (b, — )1’} % (b, +1)-(b, —r,) (49a)
and
sin(¢/2) = F{[(b, x1,)- (b, ~,))* + (b, +1,)-(b, — )’} (b, x1,) (b, —r,). (49b)
Substituting this into equation (47) gives
g, = ¢ [(b, - 1) x (b, - 1,), (b, +1,) «(b, - 1,)], 50
where ¢, is the normalization factor
¢, =jb, — 1) x (b, ~ ) +[(b, +1,)-(b, —r,)]2. 1)

We have ignored the ambiguous overall sign of the quaternion, which has no significance, since the attitude matrix is a
homogeneous quadratic function of the quaternion. The appearance of the cross product (b, —r,) x (b, - r,) is not at all
surprising, since this vector is guaranteed to be orthogonal to both b,-r and b, -r,.

Similarly, choosing  so that the vector part of g, will be perpendicular to b, - r, gives

4 =¢; (b, 1) X (b, - 1,), (b, +1,)-(r, —b,)], (52)
The vector parts of g, and g, are equal up to the normalization constant. However, the scalar part of g, is
Q. =¢;"(b, +1)-(b, ~1,) = ¢;"*[(b, -x, ~ b, -1;) + (b, -b, — ‘)] (53)
and the scalar part of g, is
9, =" (b, +1)-(r, = b)) = ;’[(b, ', = b, -1,) = (b, - b, - 1, -1;,)]. (54)

Thus, g, and g, are identical if b, -b, =r, -r,, and they are equal to
g5 =c;"*[(b, - ;) X (b, ~ 1), b, -r,~b, -r,]. (55)

We see that g, g,, and g, all have the same rotation axis, and the rotation angle of g; is intermediate between those of ¢, and
g»- The quaternion g3, which treats the two measurements symmetrically, is the estimate preferred by Reynolds; but we will
also consider the asymmetrical estimates g, and g,.



COMPARISON OF THE DIRECT QUATERNION METHOD WITH TRIAD

It would seem that the quaternion g, should correspond to the TRIAD estimate Apy, g; t0 A, and g3 10 Ap. As evidence for
this, we note that the direct quaternion estimation methods have A(g,)r, = Apr =by, Alg)r, = Apr, =b,,and g3
symmetric in the measurements, as Ar, is. However, we shall now show that this correspondence is not exact. The algebra in
the general case becomes rather messy, so we consider a simple example. Assume that we have two reference vectors
r,=[1,0,0" and =[O0 o] (56)

and two observation vectors

b, =(0,0,1)7 and b, =[cos®,0, sind)’. 7
We note that b, -b, =T, -, only if sin 8 =0, in which case all algorithms should give the same estimate.

We first compute the TRIAD estimates. Straightforward algebra results in

010 —sin® cos? O -sin(¥/2) cos(¥/2) O
A, ={0 0 1|, Ap= 0 0 1], and Ay = 0 0 1. (58)
1 00 cos® sin® O cos(¥/2) sin(¥/2) O

We note that AT, =b,, AT, =b,, Apr, =b,,and AL = b_, as expected. However,

|AnT, —by| =|ArK - b,| = 2fsin(8/2)}, (59a)
and
|AzsT, —b| =|Arsr, — b,| = 2}sin(8/4)]. (59b)

These results are not surprising, since the vectors ApF;, Ap, Ty, Apr, and Apr, are all in the plane spanned by b, and b, as

we argued was necessary for an optimal estimator. For comparison with the direct quaternion method, it is interesting to
present the quaternions extracted from Ap, Ap, Ar:

qn = *[1’ lv 1’ 1], (603)
qn={~[\/T—sim9,msim?,msinﬁ,xfr—sinﬁ], (60b)

and
grs = $[JT-5in(0/2), {1+ sin(9/2). JT+sin(9/2), 1~ Sin(d/2) |, (60¢)

where we have written out the three components of the vector part of each quaternion explicitly.

The estimates produced by the direct quaternion method embodied in equations (50), (52), and (55) are

g, = $(1+cosJsin )" 2(1, cos ¥ +sin ¥, 1, cos ¥ +sin ], (61a)
g, =%[1,cos? +sind, 1, cos® —sind], (61b)

and
g, =(4+2cos¥sin? - sin? ©)"3[1, cos @ +sin ¥, 1, cos B}. (6lc)

It is immediately apparent that the quaternions in equation (61) do not correspond to those in equation (60), unless sing =0
and all reasonable estimators agree. The attitude matrices computed from g,, g,, and g; lead to further insights:

. 0 cos® +sind —cos¥sind
Alg)=———2 0 cosUsin® cosP+sind |, (62a)
1
1+cosdsind .
1+ cos@®sin?d 0 0
—cosP¥sin® cos® sin’ ¥
A(g,) = sind 0 cos?d R (62b)
cos’ B sin® -cos¥sin?d
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and
: —sin¥(2cos ¥ +sind) 2(2cos ¥ +sind) —-2sind(cos? —sin )
A(g,) = 2sind sin¥(2cos ¥ - sin 9) 2(2cos ¥ +sind}) . (62¢)

4 +2cosBsin® ~sin® & ) ) ) , i
4 +2sin¥(cos ¥ —sin ) 2sin® —sin¥(2cos ? +sind)

We note that A(g,)r, =b, and A(g,)r, = b,, as expected. However, in the general case,

VI+ cosOsin B |A(g,)r, - b,| =|A(g, )r, - b|=+2sind)| (63a)
and
|A(g3)r, - by| =|A(g;)r, —b,| = V2(4 +2cos B sin ® - sin? 8)"kind). (63b)

These residuals are all larger than the corresponding residuals in equation (59), because the vectors A(g)r,, A(g)r,
A(gy)r;, and A(g,)r, all have components along the y axis in the body frame, which is perpendicular to the plane spanned by
b, and b,. According to our previous argument, they can’t correspond to optimal estimates for any choice of weights. We
may be prepared to give up optimality for computational simplicity, however.

SINGULARITY OF THE DIRECT QUATERNION METHOD

The direct quaternion method has the disadvantage of being ill determined whenever both the vector part and the scalar part
of the estimated quaternion take the indeterminate value 0/0. We can easily see from equation (50) that g, is undefined if

b, = r,, which is when the axis of the attitude rotation is along r, (and therefore is also along b,). Similarly, equation (52)
shows that ¢, is undefined if b, = r,, which is when the axis of the attitude rotation is along r, and b,. These estimators are
identical in the absence of measurement noise, and we certainly don’t want to depend on measurement noise to avoid a
singular condition. Thus we see that the direct quaternion method is singular whenever the attitude rotation axis is along r, or
r; (or along b, or b,). We will now show that the direct quaternion method is singular whenever the attitude rotation axis is in
the ry, r, plane, which means that it is also in the b,, b, plane.

If neither b, — r, nor b, - r, is zero, the vector part of the quaternion estimate vanishes if they are parallel, that is, if
b,-r,=§(b -r) (64)
for some scalar B. The vector b, =r, + B(b, — r,) has unit norm, which means that
1=1+28r, (b, ~1r,)+2B°(1-b, -r). (65)
Solving this for 3 (the zero root is not allowed since b, ~r, # 0) and substituting into equation (64) gives
b, =5, =[r, (b, -x,)/(1-b, -1)](b, - r,). (66)
It is now straightforward to show that equation (2) is obeyed and that
b, -, =b, T,. 67)

Thus the vanishing of the vector part of the quaternion estimates of equations (50), (52), and (55) ensures that the scalar parts
vanish automatically.

Now let us see what these conditions imply about the attitude quaternion, which certainly exists even if it cannot be
computed by the direct quaternion method. Equation (42) requires

b, =(q; ~la)r, + 2(a-1)q - 2q,(gxr) fori=1,2. (68)
From this equation, we can see that
b, r,-b,-r,=49,q - (r, xr,). (69)

This means that the scalar part of the direct quaternion estimate vanishes either if q is perpendicular to r; xr,, which is to say
thatitis in the ry, r, plane, or else if g, is zero, which indicates a 180° rotation. We still have to investigate the requirement
that b, ~ r, is parallel to b, — r,. If q is in the r,, r, plane, we can write

q=ar, +a,r,. (70)
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With equation (68), this gives
b,—n= 20 [(0, + oy - r,)n + (o, +a,r -, )y +4,(r X r,)] (71a)
and
b, -1, = 2a,[—(, + o1y p)n + (0 H OG0 q,(r, xn,)}. (71b)

These two vectors are clearly parallel. On the other hand, equation (68) for a 180° rotation gives
b, -1, = -2, +2(q 1,)q = 2¢ X (g X5,), 2

and a straightforward but tedious calculation gives
(bl—rx)x(bz—r2)=4[q'(r1sz)]q' 73)

Thus the attitude rotation axis is required to be in the r,, r, plane for the 180° rotation case to be singular, also. Thus we have
completely characterized the singular cases of the direct quaternion method as those cases for which the attitude rotation axis
is in the r,, T, plane, and therefore in the b,, b, plane, also.

The direct quaternion estimate method is singular if the attitude matrix is the identity, giving r;=b, and r; = b,. We can say
that the rotation axis is in the r,, r, plane in this case, also, because the rotation axis can be arbitrarily assigned for zero
rotation angle. Reynolds has proposed a method to avoid the singular condition in most cases, but it does not avoid the
singularity for attitude matrices close to the identity’®. The singular condition can be avoided in all cases by applying
Shuster’s method of sequential rotations'®". This method solves for the attitude with respect to reference coordinate frames
rotated from the original frame by 180° about the x, y, or z coordinate axis. That is, we solve for the quaternions

qiEq®[ei,0]=[q,q:]®[e‘.,0]=[q, i —axe.—q-¢] fori=1,2,3, 74)

where e, is the unit vector along the i coordinate axis. These rotations are easy to implement on the reference vectors, since
they simply change the signs of the components perpendicular to e;. Merely permuting and changing signs of the components
of the rotated quaternion recovers the unrotated quaternion. For example

g' =14 @2 4. 4,)®[1,0,0,01=1g,, = 45, ©2. ~ ). (75)
The method of sequential rotations always avoids the singularity, since the 3x4 matrix
[qEq:e,-qxeliq,ez—qxeziq,e3—qu3] (76)

always has rank three, as can be seen with some effort. Thus the rotation axes produced by the method of sequential rotations
span the entire three-dimensional space, which means that they cannot all be coplanar with r; and ;.

To use Shuster’s rotations to avoid the singularity, we compute the reference vectors I, and r, in all four reference frames,
unrotated and rotated about the x, y, and z axes. We compute the magnitude squared of the cross product (b, —r,)x (b, - 1;)
in each frame, and evaluate the quaternion in the frame where the cross product has the largest magnitude. The above
analysis shows that this should provide the most robust estimate. If the optimal reference frame is not the unrotated frame, we
recover the desired quaternion that transforms the unrotated reference frame to the spacecraft body frame by using equation
(75) or its equivalent for other rotations.

COMPUTATIONAL EFFORT

The speed comparison is based on the floating point operation (flop) counts in MATLAB implementations of the algorithms,
which have the advantage of being platform-independent. There are some caveats to make with regard to timing comparisons.
First, for ground computations, absolute speed isn’t all that important, since the estimation algorithm is only a part of the
overall attitude determination data processing effort. Speed was more important in the past, when thousands of attitude
solutions had to be computed by slower machines. Second, for real-time processing, as for an attitude control system onboard
a spacecraft, the longest time is more important than the average time, because the attitude control system processor has to
finish its task in a limited amount of time. This works against methods that may require sequential rotations.

Four methods for computing the attitude matrix are compared in Table 1: asymmetric TRIAD of equation (8), symmetric
TRIAD of equation (12), the optimal two-measurement estimator of equation (36), and Optimized TRIAD of equation (40).
An “asymmetric” estimator maps one of the two reference vectors into the corresponding observed vector exactly, throwing
all the measurement errors into the other vector. A “symmetric” estimator, on the other hand, treats the two measurements
symmetrically. The cost of using these four estimators to produce a quaternion is also presented. Every algorithm except
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Optimized TRIAD computes the quaternion by extracting it from the corresponding attitude matrix, a process that costs 29
flops (see the Appendix). The quaternion output of Optimized TRIAD is cheaper than the attitude matrix output because it is
extracted from the estimate of equation (39) rather than from equation (40). In addition to these four estimators, three other
estimators are included for quaternion output only: the asymmetric direct quaternion estimator of equation (50), the
symmetric direct quaternion estimator of equation (55), and QUEST, for comparison'®. The computational effort for the
direct quaternion estimation methods is given both with and without the use of rotations to avoid singular configurations. The
computational effort of QUEST does not include the cost of sequential rotations. No special efforts have been made to
achieve the most efficient possible implementation of any of the algorithms.

Table 1: Computational Effort of Estimation Algorithms in Flops

Algorithm A output g output
Asymmetric TRIAD 143 172
Symmetric TRIAD . 166 195
Optimal Two-Measurement Estimator 265 294
Optimized TRIAD 335 273
IAsymmetric Direct Quaternion — 46
Asymmetric Direct Quaternion with Singularity Avoidance — 108
Symmetric Direct Quaternion — 50
Symmetric Direct Quaternion with Singularity Avoidance — 112
QUEST — 190

Several conclusions are apparent from these results. Symmetric estimators are a little more expensive than asymmetric
estimators, in general. Optimized TRIAD with the approximate matrix orthogonalization of equation (40) is significantly
more expensive than the optimal two-measurement estimator. If quaternion output is desired, Optimized TRIAD is slightly
less expensive than the optimal two-measurement estimator; but the savings are less than 10%. However, the optimal two-
measurement estimator and Optimized TRIAD (and even symmetric TRIAD) require more computational effort than QUEST
to produce a quaternion. Asymmetric TRIAD is only slightly less expensive than QUEST, but the direct quaternion
estimation methods developed by Reynolds are significantly faster. The implementation of rotations to avoid singularities in
the direct quaternion estimation methods more than doubles their computational cost, but they are faster than other methods
even with this modification. None of the three algorithms faster than QUEST is optimal, though; and QUEST also has the
advantage of being a general-purpose algorithm applicable to any number of measurements, which avoids the need to
develop and test a special-purpose two-observation algorithm.

ACCURACY

We will analyze two test scenarios, using the nine estimators with quaternion output that were used in the timing tests. The
first scenario simulates two star trackers with narrow fields of view and orthogonal boresights at [1, 0, 0} and [0, 1, 0]". We
shall assume that the first tracker is tracking five stars at

1 0.99712 099712 0.99712 0.99712
b,={0} b,=]007584} by, ={-007584] b,=| 0 | and b,=| 0 (77a)
0 0 0 0.07584 -0.07584

and the second tracker is tracking three stars at

0 0 0
b, =[1} b,={099712] and b, =| 099712 | (77b)
0 0.07584 ~0.07584
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We simulate 1000 test cases with random attitude matrices. We use the attitude matrices to map the eight observation vectors
to the reference frame, add Gaussian random noise with equal standard deviations of 6 arcseconds per axis to the reference
vectors, and then normalize them. The errors are unconventionally applied to the reference vectors rather than the observation
vectors so that equation (77) will remain valid in the presence of noise. The two-observation estimators use averages of the
multiple vectors observed by each tracker, as suggested by Bronzenac and Bender’. In this example the two averaged vectors
in the body frame are along the star tracker boresights. The optimal estimator weights for these estimators are proportional to
the inverse measurement variances, or to the number of vectors included in the average, SO we us¢ a; = 0.6 g, for the optimal
two-measurement estimator and Optimized TRIAD.

We treat the eight star measurements independently in QUEST, rather than averaging them. QUEST requires 316 flops for
eight measurements, but avoids the cost of averaging the vectors, which is 108 flops. Thus the computational effort of
QUEST should be taken as 208 flops for comparison with the other estimators in this eight-measurement example, making it
more expensive than the direct quaternion estimator and TRIAD, but faster than the optimal two-vector estimator and
Optimized TRIAD. In these tests, QUEST always used information about the true quaternion to determine the optimally

rotated reference frame for estimation, without the need to perform sequential rotations.

Table 2 shows that symmetric TRIAD, the optimal two-measurement estimator, and Optimized TRIAD perform almost as
well as QUEST. This justifies Bronzenac and Bender’s procedure of using average observation and measurement vectors for
the two star trackers. It should be noted, however, that the choice of orthogonal tracker boresights is optimal for this
approximation, and that symmetric TRIAD is the only one of these algorithms that is computationally less expensive than
QUEST, requiring 13 fewer flops. The symmetric direct quaternion estimator with singularity avoidance provides average
and maximum errors within 10% of those of the best estimators with less computational effort, though.

Table 2: Average (Maximum) Estimation Errors (arcseconds) for Star Tracker Scenario

Algorithm All Cases las| 2 /2 lgs| < 1/2
Asymmetric TRIAD 4.6 (12.1) 4.5(11.3) 4.7 (12.1)
IAsymmetric Direct Quaternion 13.6 (2562) 5.2(17.8) 20.1 (2562)
IAsymmetric Direct Quaternion with Singularity Avoidance 5.1 (16.9) 5.1(14.5) 5.1 (16.9)
Symmetric TRIAD 44 (12.2) 4.3 (11.6) 4.5(12.2)
Symmetric Direct Quaternion 14.2 (4763) 47 (14.6) 21.6 (4763)
Symmetric Direct Quaternion with Singularity Avoidance 4.7(12.9) 4.6(12.1) 4.8(12.9)
Optimized TRIAD 4.6 (12.1) 4.5 (11.3) 47 (12.1)
Optimal Two-Measurement Estimator 4.6 (12.1) 45(11.3) 4.7 (12.1)
UEST 4.4 (11.8) 4.3 (11.5) 44(11.8)

The results also show that symmetric estimators perform slightly better than asymmetric estimators in this scenario. This was
expected, since the number of stars tracked in the two trackers and thus the measurement weights are nearly equal. A
symmetric estimator would be preferred in a real star tracker application, since there would be no way of predicting a priori
which tracker would view more stars.

Table 2 also shows inferior performance of the direct quaternion estimators without singularity avoidance. The performance
is not so bad in the 436 simulated cases with |g;| 2 1/2 as in the 564 cases with |gs| <1/2. The latter are the cases in which we
would expect singularities to occur, since they have either small rotation angles or rotation axes close t0 the x-y plane, the b,
b, plane in this scenario. This shows the importance of avoiding singular cases in an application of these estimators. We note

that the performance with singularity avoidance, as well as the performance of all the other estimators, is independent of gs.

The second scenario that we consider is a sun-mag system, similar to that on SAMPEX?, assuming a digital sun sensor with
accuracy of 0.1° and a magnetometer with effective accuracy of 1°. We assume that the Sun is at the center of view of the
digital sun sensor at b, = [1, 0, 0]7, but the orientation of the magnetic field vector is not fixed in the spacecraft body frame.
We simulate 1000 random attitude matrices and random magnetic field vector orientations, except that we do not allow the
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magnetic field direction to be within 5° of the + y axis. These are the cases with coaligned vectors that the SAMPEX onboard
attitude determination system rejects. We use the attitude matrices to map the Sun and magnetic field observation vectors to
the reference frame, add Gaussian random noise with standard deviations as specified above, and then normalize the
reference vectors. In this case the optimal estimator weights have a, = 0.01 a,.

The estimation errors for this scenario are presented in Table 3. The roll (x axis) and pitch/yaw (root-sum-squared of y and z
axes) errors are presented separately, since the estimate of pitch and yaw provided by the digital sun sensor on the x axis is
more precise than the roll angle estimate provided by the magnetometer. We note from these tables that QUEST and the
optimal two-measurement estimator give identical errors, as they must since this scenario has two vector measurements.
Since the weight assigned to the magnetometer measurement is so much less than the weight of the sun sensor measurement,
Optimized TRIAD and asymmetric TRIAD give virtually the same results as the optimal estimators. The asymmetric direct
quaternion estimator with singularity avoidance provides equivalent pitch and yaw errors, and average and maximum roll
errors within 20% of those of the best estimators, with less computational effort.

Symmetric estimators are inferior to asymmetric estimators in the sun-mag scenario, since they allow the magnetometer
errors to corrupt the sun sensor determination of pitch and yaw. Table 3a shows that the direct quaternion estimation method
must be modified to provide acceptable roll estimation in the 551 cases with |a.|<1/2, where g, is the component of q
perpendicular to the by, b, plane. Table 3b shows that pitch and yaw estimates provided by the asymmetric direct quaternion
estimator are insensitive to these singular configurations, since this estimator maps r, into b, exactly.

Table 3a: Average (Maximum) Roll Estimation Errors  (degrees) for Sun-Mag Test Case

Algorithm All Cases la.|z2y2 la,| <12
Asymmetric TRIAD 0.88 (3.06) 0.93 (2.92) 0.84 (3.06)
IAsymmetric Direct Quaternion 2.82(114) 1.07 (4.78) 4.24 (114)
lAsymmetric Direct Quaternion with Singularity Avoidance 1.01 (3.58) 1.05 (3.36) 0.98 (3.58)
Symmetric TRIAD 0.88 (3.06) 0.93 (2.92) 0.84 (3.06)
Symmetric Direct Quaternion 1.97 (86.5) 0.98 (3.78) 2.77 (86.5)
Symmetric Direct Quaternion with Singularity Avoidance 0.92 (3.23) 0.96 (3.16) 0.89 (3.23)
Optimized TRIAD 0.88 (3.06) 0.93 (2.92) 0.84 (3.06)
Optimal Two-Measurement Estimator 0.88 (3.06) 0.93 (2.92) 0.84 (3.06)
QUEST 0.88 (3.06) 0.93 (2.92) 0.84 (3.06)

Table 3b: Average (Maximum) Pitch/Yaw Estimation Errors (degrees) for Sun-Mag Test Case

Algorithm All Cases la,|21/2 la.|<12
Asymmetric TRIAD 0.13 (0.36) 0.13 (0.35) 0.13 (0.36)
Asymmetric Direct Quaternion 0.13 (0.36) 0.13 (0.35) 0.13 (0.36)
IAsymmetric Direct Quaternion with Singularity Avoidance 0.13 (0.36) 0.13 (0.35) 0.13 (0.36)
Symmetric TRIAD 0.43 (1.60) 0.42 (1.54) 0.43 (1.60)
Symmetric Direct Quaternion 1.53 (96.3) 0.50 (1.91) 2.37 (96.3)
Symmetric Direct Quaternion with Singularity Avoidance 0.48 (1.92) 0.49 (1.91) 0.48 (1.92)
Optimized TRIAD 0.13 (0.37) 0.13 (0.35) 0.13 (0.37)
Optimal Two-Measurement Estimator 0.13 (0.37) 0.13 (0.35) 0.13(0.37)
QUEST 0.13 (0.37) 0.13 (0.35) 0.13(0.37)
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CONCLUSIONS

We have analyzed four spacecraft attitude determination methods using exactly two vector measurements: the well-known
TRIAD algorithm, an optimal closed-form two-measurement of Wahba'’s optimization problem, the Optimized TRIAD
algorithm of Bar-Itzhack and Harman, and the direct quaternion estimation method of Reynolds. These methods are
applicable to a variety of problems, including coarse “sun-mag” attitude estimation using the unit vector to the Sun and the
Earth’s magnetic field vector and precise estimation using unit vectors to stars tracked by two star trackers. For TRIAD and
the direct quaternion estimation method, we investigate both “asymmetric” forms that map one of the two reference vectors
into the corresponding observed vector exactly, and “symmetric” forms that distribute the errors symmetrically between the
two measurements. We also include the well-known QUEST algorithm for comparison,

The computational speed of the algorithms was compared using floating point operation (flop) counts in MATLAB. These
show that Optimized TRIAD and the optimal two-measurement estimator are more expensive than QUEST, which has the
additional advantage of being a general-purpose algorithm applicable to any number of measurements. The direct quaternion
estimation methods are significantly faster than QUEST, however. Both QUEST and the direct quaternion estimation

methods have the disadvantage of sometimes requiring special computations to avoid singular cases, but the direct quaternion
estimation methods are faster than any other methods even with these modifications.

We analyzed the accuracy of the estimators in two test scenarios. The first scenario simulated two star trackers with narrow
fields of view and orthogonal boresights, using average vectors for five stars in the first tracker and three in the second. The
second scenario simulated a digital sun sensor with accuracy of 0.1° and a magnetometer with effective accuracy of 1°.
Symmetric estimators outperformed asymmetric estimators in the first scenario, and asymmetric estimators were superior in
the second, as was expected. With this proviso, all the estimators had comparable errors. The one exception is that the direct

quaternion estimators had larger errors if not modified to avoid singularities, showing the need for these modifications.

This paper demonstrates the superiority of TRIAD, QUEST, and the direct quaternion estimation methods for attitude
estimation from two vector measurements.
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APPENDIX

The following MATLAB function was used to extract quaternions from attitude matrices'®!,
function q = dcm2quat (a)

% finds the quaternion representation of a direction cosine matrix a

% find maximum of trace or diagonal element of direction cosine matrix

tra = trace(a);
[mx,1i] max ([a(1l,1) a(2,2) a(3,3) tral);

% compute unnormalized quaternion

if i==1, g = [2*mx+l-tra;a(1,2)+a(2,l);a(1,3)+a(3,l);a(2,3)—a(3,2)]; end;
if i==2, ¢q [a(2,l)+a(l,2);2*mx+1—tra;a(2,3)+a(3,2);a(3,l)—a(l,3)]; end;
if i==3, g = [a(3,l)+a(l,3);a(3,2)+a(2,3);2*mx+1—tra;a(l,2)—a(2,1)]; end;
1f i==4, g = [a(2,3)—a(3,2);a(3,1)—a(1,3);a(l,2)—a(2,l);l+tra]; end;

% normalize the quaternion
qd = g/norm{(q);
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AN ADAPTIVE KALMAN FILTER USING A SIMPLE
RESIDUAL TUNING METHOD

Yoo

Richard R. Harman
NASA-GSFC
Code 572
Aerospace Engineer
Greenbelt, MD 20771

One difficulty in using Kalman filters in real world situations is the selection of
the correct process noise, measurement noise, and initial state estimate and covariance.
These parameters are commonly referred to as tuning parameters. Multiple methods have
been developed to estimate these parameters. Most of those methods such as maximum
likelihood, subspace, and observer Kalman Identification require extensive offline
processing and are not suitable for real time processing. One technique, which is suitable
for real time processing, is the residual tuning method. Any mismodeling of the filter
tuning parameters will result in a non-white sequence for the filter measurement
residuals. The residual tuning technique uses this information to estimate corrections to
those tuning parameters. The actual implementation results in a set of sequential
equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a
specialized version of this technique for estimation of process noise [“Adaptive
Filtering”, Proceedings of IFAC Symposium Multivariable Control Systems, Dusseldorf,
Germany, October 1968, Vol. 2, pp. 1-15} Equations for the estimation of the
measurement noise have also been developed. These algorithms are used to estimate the
process noise and measurement noise for the Wide Field Infrared Explorer star tracker
and gyro.
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VORNO! DENSITY REDUCTION METHOD
10 SELECTSTARS FOR AN ON-BOARD CATALOG

Robert Bauer, (Bauer Engineering Enterprises, Langhorne, Pennsylvania

INTRODUCTION

In Ref. 1 Bauer introduces the Voronoi density reduction | 7

method to select stars for an on-board catalog from a _; i—- - # 7

larger candidate set. He compares the method to previous yd —_

methods of Vedder, Yates, and Kudva (Refs. 2, 3, 4) by —_—

way of three illustrative examples.  Here 2 fourth r ‘ N

example is given which compares the VDR method to 2 _} r e

common approach in which 2 circular window is swept
over the sky, and the 3 brightest stars are selected for the
onboard catalog.

The Voronoi density reduction method is based on the l
Voronoi diagram of candidate stars. The Voronoi
diagram is a subdivision of the celestial sphere into \
spherical polygonal cells, one for each star, s0 that the ~

cell for star P consists of the region closer to P than to
any other star. The star having the smallest Voronoi
cell is considered to be in the densest region of the
candidate set. The topological dual of the Voronoi X

diagram is the Delaunay triangulation. It has the l
important characteristic  that  the spherical  cap

circumscribing any triangle is devoid of other candidate %
stars. These Delaunay caps represent the “holes” in the

candidate set. / / \\

The Voronoi density reduction method has been / <
implemented as the Vorosel™ (vor-0-SEL) Tool. The y *

user’s manual for the tool is given in the Appendix. In  Figure 1 Voronoi Diagram/Delaunay Triangulation for 2
the sequel it 18 assumed that the reader has read the Set of Randomly Distributed Points.
introduction to the user’s manual.

AN EXAMPLE

For the example a candidate set of 5199 stars were artificially generated by randomly distributing stars over the unit sphere.
The density of stars near the poles was made t0 be about 40% less than near the equater. The magnitudes of the stars were
randomly distributed between 1 and 6 using a distribution typical of actual stars. An onboard catalog was then selected using
the following method. A 5.C degree radius circular star sensor field-of-view (FOV) was swept uniformly over the sphere. The
three brightest stars in the FOV at any given position were selected to generate the “KHQS” (Keep High Quality Stars)
catalog. This method will favor brighter stars and guarantee 10 the extent possible that the sensor sees at least three catalog
stars for any position ofits FOV. A total of 2592 stars were selected, an average of 4.9 stars per FOV.

The Vorosel Tool was then used to generate three other onboard catalogs with the same number of stars as the KHQS catalog.
The “SVDR” catalog was generated using the standard Voronoi density reduction method without any options, i.e. RO star
weighting, Delaunay cap anchoring, etc. As will be demonstrated below, the SVDR catalog has a much more uniform spatial
distribution of stars than the KHQS catalog, but also includes a higher frequency of dimmer stars.

The “WVDR” catalog was generated using the Voronoi density reduction method with star weighting applied to favor brighter
stars. The weight forthe i star was set according to the formula below:

w, = exp(-gm.) 6
where m, is the star magnitude and g = 0.8 is the weighting parameter. The WVDR catalog has approximately the same star

magnitude distribution as the KHQS catalog, but has 2 more uniform spatial distribution.
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Finally, the “DCA” catalog was generated using Voronoi density reduction with Delaunay cap anchoring. Before the Voronoi
density reduction was applied, candidate stars defining Delaunay caps having radii greater than 3.33 degree were anchored. A
total of 1026 stars were anchored in this manor. Then during the Voronoi density reduction, if the removal of a star from the

Table 1 gives three measures of spatial distribution for each of the onboard catalogs. For all of the measures, a smaller value
Feprésents a more uniform distribution. The R-measure (Ref. 2) is the variance of the number of stars in the sensor FOV
divided by the average number of stars in the FOV. The D-measure (Ref. 1) is the variance of the Voronoi density times a
normalizing scale factor, where the V., oronoi density is the inverse ofthe Voronoi cell area. The kernel of the G-measure (Ref,
1) is the average of the Delaunay cap areas. A smaller G-measure represents a distribution whose Delaunay triangles are more
nearly equilateral. The D and G-measures are defined in Ref 1, and are described briefly in Section 3.1 of the Vorosel Tool
User’s Manual (see the appendix). The measures of spatial distribution indicate that a| three of the onboard catalogs selected
using the Vorosel Tool are more uniform than the KHQS catalog.

Table 1 Measures of Spatial Distribution -

Measure CamﬂL
Candidates KHQS WVDR SVDR DCA
R 2.402 0.520 0.523 0.352 0.375
D 1510 0.511 0.361 0.158 0.182
G 1.001 0.954 0.754 0.639 0.677

The SVDR and DCA catalogs have the highest frequency of four or more stars, but as seen in Figure 3, these catalogs also
have lower frequencies of brighter stars. According to Figures 2 and 3 the WVDR catalog is very similar to the KHQS
catalog: they both have nearly the same frequency of at least k stars in the sensor FOV, and the same distribution of star
magnitudes. However, according to Figure 4 the WVDR catalog has fewer holes (Delaunay caps) of larger radii than the
KHQS catalog. The SVDR catalog has the lowest frequency cfholes with larger radii.

ConcLusioN
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Appendix:
User’'s Manual for the Vorosel™ Tool

Version 1.0, March 1999

Written by Robert Bauer of (BauerEngineering Enterprises, Langhorne, Pennsylvania.

The Vorosel tool uses the Voronoi density reduction method 1o select starsfor an onboard catalog from
alarger candidate set. This manual gives an overview of the method and explains how 1o use the tool.

Table of Contents

ABSTRACT
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2.3 Star Weights and Anchors
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4. TALORING THE SOURCE CODE
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4.2 Read Stars Function
43 Write Stars Function
4.4 Better Star Function

5. ERROR AND WARNING MESSAGES
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Table 1 SKYMAP Run Catalog Format
Table 2 Run Parameters

Table 3 StarWeights.txt File Format
Table 4 VDGeoF .txt File Format
Table 5 DTGeoF .txt File Format

Table 6 VDDTGraph.txt File Format

™y/orosel is a trademark of (Bauer Engineering Enterprises, Langhorne, Pennsylvania.
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1. OVERVIEW

The Vorosel tool uses the Voronoi density reduction method (Ref. 1) to select stars for an onboard catalog from
a larger candidate set. The user builds a candidate set by selecting stars from a reference star catalog (such as
SKYMAP) which meet certain mission and star sensor criteria, such as star magnitude, separation, proper

the onboard catalog. Other inputs are used to refine the star selection process as described below. The onboard
catalog selected by the Vorosel tool is a very uniformly distributed sub-set of the candidates.

In this overview, the star selection process is explained, and the overall program flow of the Vorosel tool is
given. Subsequent sections give more detailed explanation of the inputs and outputs, how to tailor the source
code if so desired, and the meaning of error messages.

1.1 Voronoi Density Reduction

The Voronoi density reduction method to select stars for an onboard catalog is conceptually simply, yet very
effective.

1) Identify a star in the densest region of the candidate set.

2) Remove the star to yield a smaller, more uniformly distributed candidate set.

3) Repeat the removal process until the desired number of stars remains.

To identify a star in the densest region of the candidate set, first the Voronoi diagram (Ref. 2) of the candidates
is constructed. The Voronoi am is a subdivision of the celestial sphere into spherical polygonal cells, one

Several refinements of the basic Voronoi density reduction just described are possible. The simplest of these
refinements is to remove the star with the smallest weighted Voronoi cell area, which is simply the Voronoi

The second refinement involves the use of anchors supplied by the user for each star. An anchor is a multi-
purpose flag: it specifies whether the respective star is in the region of interest for the onboard star catalog
(anchor = 0 or 1), and it specifies whether the star must be included in the onboard star catalog (anchor = 1). F
the star is not in the region ofinterest (anchor = -1) it is still subject to the Voronoi density reduction, but is
not included in the final onboard catalog. During each iteration of the Voronoj density reduction, the star with
the smallest weighted Voronoi cell area whose anchor is not 1, is removed from the candidate set. The
iterations terminate when the number of candidate stars in the region of interest (anchor = 0 or 1) equals the
desired number of stars for the onboard star catalog.

It may occur to the reader that if the user wants only stars in a certain region of interest, then why not simply
exclude stars which are outside of this region from the candidate set. While this approach appears to be
reasonable, the user should be aware of the follow nuances of the Vorosel tool. First and most serious, if the
spherical cap circumscribing the candidate stars is smaller than a hemisphere, the algorithm to construct the
Voronoi diagram may fail. Second, the Voronoi density reduction will tend to keep all stars along the border of
the region of interest if there are no candidate stars outside the region. Thus, the star density in the onboard
catalog would tend to be highest where stars are likely not to be needed (assuming the user has chosen a region
of interest which is slightly larger than the expected range for star sensing).  Therefore it is strongly

60



recommended that stars outside the region of interest be included in the candidate set to act as “puffers” insuring
proper construction of the Voronoi diagram, and keeping the star density uniform throughout the onboard
catalog.

The final refinement of the Voronoi density reduction is call Delaunay cap anchoring. 1t is designed to limit
the size of “holes” in the onboard star catalog to a specified value to the extent possible. This refinement is
based on the Delaunay triangulation (Ref. 2) of the candidate stars. A triangulation subdivides the sky into
contiguous spherical triangles whose vertices are the candidate stars. A Delaunay triangulation has the unique
property that the spherical caps circumscribing these triangles are devoid of candidate stars. These “Delaunay
caps” may be interpreted as holes in the candidate set. With Delaunay cap anchoring, the stars defining
Delaunay caps whose radii are larger than a value supplied by the user are anchored before the Voronoi density
reduction is performed. Then, during each iteration of the Voronoi density reduction, if it is found that the
removal of a star from the candidate set creates a Delaunay cap larger than the limit, the star is returned to the
candidate set and anchored. The user may “turn-off” Delaunay cap anchoring by supplying a limit on the cap
radius of 180 degrees or greater.

There are several run paramelers which the user must specify to control the star selection process. For
example, the user must specify the number of stars to keep in the on-board catalog and whether to use weights
or anchors during the Voronoi density reduction. These parameters can be supplied from the user’s keyboard,

or from a file. Section 2 defines the parameters and gives guidelines on how to use them to tailor the Voronoi
density reduction to the user’s needs.

Section 3 describes the output of the Vorosel tool. The on-board star catalog is written to a file in “SKYMAP
run catalog” format (Ref. 3). A summary of results and any error messages are written to the user’s momnitor and
to a file. Information on the Voronoi cells and Delaunay triangles for the on-board catalog are written 10 files for
further analysis if the user so desires.

On rare occasions the user may need to modify the Vorosel tool source code to his/er specific needs. Section 4
explains how to tailor the source code for changes the user is most likely to need, including how to tailor the
functions to read in the candidate stars and write out the on-board catalog,

1.2 Program Flow
The program flow for the Vorosel tool is outlined below.

1) Read in the run parameters. The run parameters are read from the file RunParameters.txt if it
exists. Ifnot, the user will be prompted to enter the run parameters from the keyboard.

2) Readin the candidate stars from the file CandidateStars. txt, and the weights and anchors from the

file StarWeights.txt. Note that StarWeights. txt is needed only if the user has specified in
the run parameters that weights and anchors are to be used.

3) Construct the Voronoi diagram/Delaunay triangulation (VD/DT) of the candidate stars. The VD/DT is
represented by a common quad-edge data structure. The algorithm to construct the VD/DT is
incremental and starts by building a scaffold from vertices of a regular spherical tetrahedron. The scaffold

forms an initial VD/DT to start the algorithm and is removed at the end. Star in the candidate set are
inserted one by one, adding and deleting edges as necessary. When all candidate stars have been
inserted, the points of the scaffold are removed. See Ref. 1, 4, and § for details of the algorithm.

4) Measurethe uniformity of the candidate star distribution as well as other statistics.

5) Performthe Voronoi density reduction to select stars for the onboard star catalog.

Ao

Measure the uniformity of the onboard catalog distribution as well as other statistics.

Write the onboard catalog to the file OnboardStars. txt.

3

8) Write the Voronoi cell area and other cell features for each star in the onboard star catalog to the file
VDGeoF . txt. Write the Delaunay triangle area and other features for each Delaunay triangle in the
onboard star catalog to the file DTGeoF . txt.

9) Write the edges of the Voronoi diagram/Delaunay triangulation to the file VDDTGraph.txt. Datain
this file may be read and plotted by the Matlab script file plotVDDT.m supplied with the Vorosel tool.
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10)  Delete the data structures created and terminate the program.

Some ofthe actions given above may be skipped depending on the run parameters specified by the user. The
formats of the inputs and outputs are given in Sections 2 and 3 Tailoring of the source code, which the user
may wish to do, is explained in Section 4. Finally, errorand warning messages are explained in Section 5.

2. INPUTS

2.1 Candidate Stars

The candidate stars are read from the file CandidateStars.txt. The data for the stars is given in

SKYMAP run catalog format: each line in Candi dateStars. txt consist of 107 ASCII bytes formatted as
defined in Table 1.

Table 1 SKYMAP Run Catalog Format

Bytes Format Description

1-9 Integer SKYMAP Number
10-24 Floating Point G.C.1_Unit Vector X coordinate
25-39 Floating Point G.C.I. Unit Vector Y coordinate
40-54 Floating Point G.C.I. Unit VectorZ coordinate
55-69 Floating Point Instrument Magnitude
70-84 Floating Point Proper Motion
85-92 Hexadecimal Quality Flag
93-107 Floating Point B-V Color Index

2.2 Run Parameters

Example of RunParameters. txt

# Text after a pound sign (#) to the end of the line is a comment.
# Parameters must be listed in the order given below:
#

# Beginning of parameter 1list

2500 # Number of stars desired for onboard star catalog

0 # Do not use weights and anchors

130.0 # Do not impose a Delaunay cap size limit

10.0 # Over-sample the sky by a factor of 19

4.0 # Sensor FOV radius in degrees

1 # Write onboard star catalog to file

1 # Write onboard star catalog geometric features to file
0 # Do not write onboard star catalog VD/DT to file

# End of parameter list
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Table 2 Run Parameters

Parameter Units Description
Desired size of the Unitless | If a number greater than 1 is given, it is interpreted as the desired number
onboard star catalog or of stars for the onboard star catalog. If a number less than 1 is given, it is
Stars/Deg’ | interpreted as the desired average star density for onboard star catalog in

stars/degree’. Note that the solid angle of a sphere is 4n steradians or
47 (180/x)’ degree” = 10,313.24.degree’”.

Flag to use weights 0/1 If this flag is set to 1, weights and anchors read from the file

and anchors StarWeights.txt are used in the Voronoi density reduction method.
During each iteration of the method the star with the smallest weighted
Voronoi cell area is removed from the candidate list if it is not anchored.
For a detailed description of how the weights and anchors are used and the
StarWeights. txt file format see Section 2.3.

Delaunay cap Degrees | Before the Voronoi density reduction method is applied, all candidate stars

radius limit defining Delaunay caps bigger that this limit are anchored (see Section 2.3
for how the anchors are used). During the Voronoi density reduction, if the
removal of a candidate star causes the creation of a Delaunay cap bigger
than the limit, the star is reinserted into the candidate set and anchored.
Setting the limit to 180.0 degrees (or greater) results in no stars being
anchored based on Delaunay cap size.

Demographics Unitless | If the demographics resolution is greater than zero the Vorosel tool will

resolution find the frequency of k stars in the sensor field of view as the sensor bore
sight is swept uniformly over the sphere. The distribution of star
magnitudes will also be found. To find the frequency of having k stars in
the sensor field of view, a large number of uniformly distributed sensor
bore sights are generated. (The “spiral” distribution described in Ref. 1 is
used.) A resolution of 10, the recommended value, means that on average
10 of the sample sensor fields of view will overlap any given point on the
sphere.

Sensor field of Degrees | The sensor field of view radius is used to determine the onboard catalog

view radius demographics as described above.

Flag to write on- 0/1 If this flag is set to 1, the onboard star catalog will be written to the file

board catalog to file OnboardStars. txt. See Section 3.2 for a description of the file format.

Flag to write vD/DT 0/1 If this flag is set to 1, the Voronoi Diagram and Delaunay triangulation

geometric features to geometrical features for the onboard star catalog will be written to the files

file vDGeoF . txt and DTGeof . txt respectively. See Section 3.3 fora
description of the features and file formats.

Flag to write vD/DT 0/1 If this flag is set to 1, the endpoints of the Voronoi diagram/Delaunay

edges to file triangulation edges in the region of interest will be written to the file

vDDTGraph. txt. See Section 3.4 for a description of the file format.
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2.3 Star Weights and Anchors

If the flag to u
StarWeights. txt. Each line of this file contains the weight and anchor for one star. For each star read

the Vorosel tool aborts. Table 3 defines the StarWeights. txt contents. The use of the weights and
anchors by the Voronoi density reduction is explained in detail in Section 1.1

Table 3 StarWeights. txt File Format

Parameter Format Description

SKYMAP Number Integer | The SKYMAP number on the line n of StarWeights. txt must agree

with the one on the line n of Candi dateStars -txt.
If not, an error message is issued and the Vorosel tool aborts,

Weight Floating | The weight is used during the Voronoi density reduction. The star with
Point the smallest weighted Voronoi cell area (the weight times the cell area)
which is not anchored is removed from the candidate set during each
iteration of the Voronoi density reduction. The weight must lie between
LIGHT_WGHT_LIM and HEAVY_WGHT_L IM defined in the header file

userif.h (see Section 4. 1). Ifnot, a warning message is issued and the
following action is taken:

If weight < 0.0, the star is excluded from processing as if it were not given
in the candidate star file;

else if weight < LIGHT_WGHT_LIM it is set to LIGHT_WGHT_LIM.

else if weight > HEAVY_WGHT _LIM the star is anchored, i.e. the anchor is
set to 1 (see below).

Anchor Integer | The anchor flag can take on four values: ~-2,-1,0,and 1. The meaning of
the four values is summarized below:

If anchor < -2 then the star is excluded from processing as if the star were
not given in the candidate star file,

If anchor = -1 then the star is handled by the Voronoi density reduction in
the usual way, but it is not counted as a candidate for the onboard star
catalog. This value is used to indicate that the star is outside the region of
interest for the onboard catalog.

for the weights and anchors as needed. The bsw tool is then recompiled using the makefile supplied with
the Vorosel tool.




3. OuTPUTS

There are several outputs from the Vorosel tool. The most of important, of course, is the onboard catalog
which is written to the file OnboardStars.txt. Status and statistical outputs are written to the user’s
monitor and to the file RunSummary . txt. There are several other outputs which can be used to validate the
onboard catalog. These outputs include the onboard star catalog demographics, geometric features of the
Voronoi diagram/Delaunay triangulation, and the edges of the Voronoi diagram/Delaunay triangulation. All o
these outputs are explained in detail in the follow subsections.

3.1 Run Summary

Run summary results are written to the user’s monitor and to the file RunSummary.txt. Included among
other results are the following:

Number of stars in the full candidate set and the number of candidate stars in the region of interest;
Area of the region of interest,

Uniformity measures of candidate stars in the region of interest,

Number of stars anchored directly by the user and by adherenceto the Delaunay cap size limit;
Number of stars desired and actually selected for the onboard star catalog;

Uniformity measures of the onboard star catalog;

Onboard star catalog demographics,

Error and warning messages.

The area of the region of interest is the average of the sum of Voronoi cell areas for stars in the region of interest
and the sum of Delaunay triangle areas for the Delaunay triangles in the region of interest. A Delaunay triangle
is considered to be in the region of interest if two ofits three vertices are in the region of interest.

Two uniformity measures, the D-measure and the G-measure (Ref. 1), are calculated for the candidate stars in the
region of interest and for the onboard star catalog. The D-measure equals the variance of the Voronoi density
(inverse of the Voronoi cell area) over the region of interest times a normalizing scale factor. For a uniformly
random distribution of stars the D-measure is statistically equal to 1.0. For a distribution wherein all Voronoi
cells are of the same area, the D-measure is zero.

The kernel of the G-measure is the average Delaunay cap area divided by the ideal minimum average Delaunay
cap area for Delaunay triangles in the region ofinterest. (A Delaunay triangle is considered to be in the region

of interest if at least two ofits vertices are in the region of interest.) The ideal minimum Delaunay cap area is

the area of the cap circumscribing an equilateral triangle whose area equals the average Delaunay triangle areain
the region of interest. A nommalizing function is applied to the kemnel to arrive at the G-measure. For a
uniformly random distribution of stars the G-measure is statistically equal to 1.0. Fora distribution wherein all
Delaunay triangles are equilateral (an idealized condition), the G-measure is zero.

3.2 Onboard Star Catalog

The onboard star catalog is written to the file OnboardStars. txt in SKYMAP run catalog format (ses
Table 1). Stars appear in OnboardStars. txt in the same orderas in CandidateStars. txt.

3.3 Voronoi DiagranvDelaunay Triangulation Geometric Features

The geometric features of the Voronoi diagram are written to the file VDGeoF _txt if the flag to write the
features is set (see Section 2.2). These features include: the Voronoi cell area; the Voronoi cell perimeter
length; and the Voronoi cell aspect number, which represents how close the Voronoi cell 1s to being a regular
hexagon. The aspect number Ay is given by the following formula:

Ay = l"(lk /Yk)
where

Ag= Lengthofthe &* Voronoi cell perimeter

Yk = Perimeter length ofa regular spherical hexagon whose areais the same as the K® Voronoi cell
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Each line of VDGeoF . txt contains the features for one Voronoi cell, The file format is given in Table 4.

Table 4 VDGeoF . txt File Format

Bytes Format Description

1-9 Integer SKYMAP Number ofthe star in the Voronoi cell
10-24 | Floating Point Voronoi cell areain degree’
23.39 | Floating Point | Voronoi cell perimeter length in degree

40-54 Floating Point | Voronoi cell aspect number

The geometric features of the Delaunay triangulation are written to the file DTGeoF . txt if the flag to write the
features is set (see Section 2.2). These featuresinclude: the Delaunay triangle area; the Delaunay cap radius; and
the Delaunay triangle aspect number, which represents how close the Delaunay triangle is to being equilateral.
The aspect number 4, is given by the following formula:

Apk =1"(ak/ﬁk)
where
@ = areaofthe " Delaunay cap

By = areaofa cap circumscribing an equilateral spherical triangle whose area is the same as the &"
Delaunay triangle

Each line of DTGeoF . txt contains the features for one Delaunay triangle. The file format is given in Table 5.

Table 5 DTGeoF . txt File Format

Bytes Format Description

1-9 Integer SKYMAP Number of the star at the first vertex of the Delaunay triangle
10-18 Integer SKYMAP Number of the star at the second vertex of the Delaunay triangle
19-27 Integer SKYMAP Number of the star at the third vertex ofthe Delaunay triangle

28-42 | Floating Point Delaunay triangle area in degree’
43-57 | Floating Poimt Delaunay cap radiys in_degree

58-72 | Floating Point Delaunay triangle aspect number

3.4 Voronoi Diagram / Delaunay Triangulation Edges

The endpoints of the Voronoi diagram / Delaunay triangulation edges in the region of interest are written to the
file VDDTGraph. txt if the flag to write the edges is set (see Section 2.2). Each line in VDDTGraph. txt
gives the endpoints for one Voronoi diagram edge and the dual edge in the Delaunay triangulation. The file
format is given in Table 6.
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Table 6 VDDTGraph. txt File Format

Bytes Format Description
1-10 Floating Point X coordinate of the first endpoint of the Voronoi Edge
11-20 Floating Point Y coordinate of the first endpoint of the Voronoi Edge
21-30 Floating Point Z coordinate of the first endpoint of the Voronoi Edge
31-40 Floating Point X coordinate ofthe second endpoint of the Voronoi Edge
41-50 Floating Point Y coordinate of the second endpoint ofthe Voronoi Edge
51-60 Floating Point | Z coordinate of the second endpoint ofthe Voronoi Edge
61-70 Floating Point X coordinate ofthe first endpoint of the Delaunay Edge
71-80 Floating Point Y coordinate of the first endpoint ofthe Delaunay Edge
81-90 Floating Point Z coordinate of the first endpoint of the Delaunay Edge
91-100 Floating Point X coordinate of the second endpoint of the Delaunay Edge
101-110 Floating Point Y coordinate of the second endpoint of the Delaunay Edge
111-120 Floating Point Z coordinate of the second endpoint ofthe Delaunay Edge

4. TAILORING THE SOURCE CODE

This section explains those parts of the source code which the user may wish to tailor to his/her specific needs.
This code in contained in two files, userif.h and userif.cc. The source code may be recompiled using
the makef1ile included with the Vorosel tool.

4.1 Global Parameters

The header file userif. h defines eight global parameters. A description of each is given below. If the user
changes the values of these parameters the Vorosel tool must be recompiled.

CATNAME = “SKYMAP” is the name of the source catalog. It is used in printing diagnostic information.
The Vorosel tool assumes the candidate stars are from a SKYMAP run catalog. The character string assigned

to CATNAME may be changed if the source of the candidate stars is changed. (Such a change might also require
that the function to read the candidate stars be changed as described in Section 4.)

LINE_LENGTH = 107 is the length ofa line in CandidateStars.txt. It is used to check the validity
of star data read in from CandidateStars.txt. The Vorosel tool assumes the candidate stars are from a
SKYMAP run catalog. The user may need to change the value of LINE_LENGTH if the format of

CandidateStars.txt is changed. (Such a change would also require that the function to read the
candidate stars be changed.)

COIN = 1.0e-6 (0.2 arcseconds) is used in the test of coincidence of star locations. If two stars in the
candidate catalog file are within COIN radians of each other, only one of the two is retained in the Delaunay
triangulation as decided by a call to BetterStar(). See Section 4.4 for a description of the function
BetterStar(). The value assigned to COIN may be change, but it must be greater than or equal to the
square root of EPS2.

LIGHT_WGHT_LIM= 1.0e-3 and HEAVY_WGHT_LIM= 1.0e+3 areused to limit the star weights. F
a weight is less than 0, a wamning is issued and the star is excluded from processing as if it were not given in
the candidate star file. Ifa weight is between 0.0 and LIGHT_WGHT_LIM, a warning is issued and the weight

is set to LIGHT WGHT _LIM. Ifa weight is greater than HEAVY_WGHT _LIM, a warning message is issued
and the star’s anchor is set to +1, signifying that that is must be included in the onboard catalog. (See

Sections 1.1 and 2.3.) Ifthe user wishes to change the values of LIGHT_WGHT _LIM or HEAVY_WGHT_LIM,
their quotient must be made greater than or equal to 1000 times the machine epsilon.
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TALLY_LIMIT =31 is used to limit the number of stars counted in the sensor field-of-view when finding
the onboard star catalog demographics. It is also used to limit the recursion of the demographics workhorse

Knock(). If TALLY_LIMIT is increased, there must be enough core memory to allow as many as
TALLY_LIMIT ievels of recursion by Knock().

BIN_SIZE = 0.5 is the size ofthe bins used to find the star magnitude histogram for the onboard catalog.

MARKPERIOD = 50 is used to issue progress marks during the Voronoi density reduction. To increase the
frequency of marks, decrease MARKPERIOD.

EPS1 = 1.0e-7 is used to check the length of each candidate star position vector. Ifthe length is different from
1.0 by more than half EPS1, a warning is issued and the position vector is normalized. There should rarely be

a reason to change the value of EPS1. Ifit is changed it must be greater than or equal to the value of EPS2 and
the machine epsilon.

EPS2 = 2.0e-14 is used for the following checks:

1) When triangulating the cavity created by a star removal during the Voronoi density reduction, if the
triangulation cannot be made strictly Delaunay, encroachment as great as half EPS2 is allowed by stars
into the caps defined by the triangles in the triangulation of the cavity. Ifit is still not possible to
triangulate the cavity, an error message is issued and the Vorosel tool aborts.

2) Whether the triangulation of the stars is Delaunay. Ifany star encroaches into a Delaunay cap by more
than 1.1 times EPS2, a warning message is issued and the Vorosel tool aborts.

3) Whether the sum of Voronoi cell areas is 4n. Ifthe sum divided by 4 is different from 1.0 by more
than EPS2, a warning message is issued and the Vorosel tool aborts.

4) Whether the sum of Delaunay triangle areasis 4n. Ifthe sum divided by 4n is different from 1.0 by more
than EPS2, a warning message is issued.

S) Whether two vectors are equal. Two vectors are considered equal if the magnitude squared of their
differenceis less than EPS2.

There should rarely be a reason to change the value of EPS2. Ifit is changed it must be greater than or equal to
50 times the machine epsilon.

4.2 Read Stars Function

The function ReadStars() in the source file userif.cc reads the candidate stars from the file
CandidateStars.txt. It is designed to read star featuresin SKYMAP run catalog format (see Table 1).
The user may wish to modify this code to read other formats. Changes to ReadStars() should be restricted
to that part ofthe code delineated by // USER SPECIAL //.

4.3 Write Stars Function

The function WriteStars() in the source file userif.cc writes the onboard star catalog to the file
OnboardStars.txt. It is designed to write star features in the same format as found in
CandidateStars.txt. The user may wish to modify this code to write other formats. Changes to
WriteStars() should be restricted to that part ofthe code delineated by // USER SPECIAL //.

4.4 Better Star Function

The function BetterStar() in the source file userif.cc is called when two candidate stars are found to
occupied the same site on the sphere. BetterStar() determines which ofthe two stars is better. The better

star is kept as a candidate and the other star is discarded. As delivered, BetterStar() simply chooses the
star with the smaller star number as the better star. The user may with to change this functions. Ifso, changes

should be restricted to that part of the code delineated by // USER SPECIAL //.
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5. ERROR AND WARNING MESSAGES

The Vorosel tool performs internal diagnostics for proper program execution. If a problem is detected and
corrective action is possible, it issues a WARNING message explaining the nature of the problem and what
action is being taken. It then proceeds with normal execution. The user should scrutinize the results carefully
to determine adequacy for the intended purpose. Ifa problem is detected and corrective action is not possible,
an ERROR message is issued and the Vorosel tool attempts to gracefully abort. Any results should be held
suspect. The following problems will causea WARNING or ERROR message.

1) The parameters COIN, EPS1, EPS2, LIGHT_WGHT_LIM, and HEAVY_WGHT_LIM are not consistent
with each other or the machine epsilon per Section 4.1. The tool issues an ERROR message and aborts.

2) CandidateStars.txt does not exist. The tool issues an ERROR message and aborts.

3) A line in CandidateStars.txt is shorter than LINE_LENGTH characters. The tool issues an
ERROR message and aborts.

4) StarWeights.txt does not exist and the user has specified weights and anchors are to be used. The
tool issues a WARNING message and proceeds without using weights and anchors.

5) Star numbers in CandidateStars.txt do not agree with those in StarWeights.txt. The tool
issues an ERROR message and aborts.

6) Star position vector is not a unit vector. The tool issues a WARNING message, normalizes the vector,
and proceeds with execution.

7) Star weight is not between LIGHT _WGHT_LIM and HEAVY_WGHT_LIM.  The tool issues a
WARNING message, takes corrective action as explained in Table 2, and proceeds with execution.

8) There are less than four valid stars in CandidateStars.txt. The tool issues an ERROR message
and aborts.

9) Two or more candidate stars are co-located, i.e., their unit vectors are within COIN radians of each other.
The tool issues a WARNING message and calls BetterStar() to decide which star to keep. For

further information regarding the parameter COIN and the function BetterStar(), see Sections 4.1
and 4.4 respectively.

10) The area of the largest Delaunay cap among the candidate stars is greater than 2m, a condition the
algorithm used by the Vorosel tool may not be able to accommedate. If such is the case, the tool will
£ail to removed the scaffold used to construct the Voronoi diagram/Delaunay triangulation of the candidate
stars. In response to this failure, the tool issues an ERROR message and aborts.

Other diagnostics are performed on the integrity of the internal data structures (the linked list of stars, the linked
list of Voronoi vertices, and the quad-edge data structure representing the Voronoi diagram/Delaunay
triangulation). None of these diagnostics should produce an ERROR message unless unsound modifications
have been made to the source code.
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Abstract

Spacecraft attitude estimation by means of an extended Kalman filter requires a reasonably true
model of the inherent noise of each sensor. For some sensors, the largest uncorrected noise
comes not from the sensor itself, but from errors in the model for the predicted observations.
This is certainly the case for Earth horizon sensors. The Earth horizon as seen from low Earth
orbit is nearly a circle whose radius depends primarily on altitude. A straightforward latitude-
dependent correction is added to this to account for the oblateness of the Earth. There also are
both seasonal and stochastic variations in the horizon height. The seasonal variations can be
predicted to some limited degree based on models derived from historical data. The stochastic
component characteristically shows variations that are correlated both in time and space but
which are unpredictable over long time spans.

This work investigates whether Earth horizon sensor performance can be improved by solving
for its systematic error as an augmentation of an attitude Kalman filter. It is found that using only
Earth and Sun sensors, the augmented state is not fully observable. Even when magnetometer
data is included, only the pitch axis component of the error can be improved; the roll component
is unobservable.

1. Introduction

Many low orbit Earth science missions use Earth sensors either as the primary attitude determination
sensors or for initial attitude acquisition prior to stepping up to star tracker-based control. Earth sensors
provide direct information to the onboard control system about the spacecraft attitude relative to the
Earth’s surface. This is clearly an advantage for Earth-oriented platforms. However, Earth sensors are
subject to errors that prevent them from serving as primary sensors on some missions. Earth imaging
missions, for example, require both high accuracy and platform stability while multi-spectral views are
being scanned. In this case, star trackers usually are used as the primary sensors in combination with
gyroscopes packaged as a three-axis Inertial Reference Unit (IRU).

Earth sensors detect the Earth limb at two or more horizon points. These measurements can be ex-
pressed as an Earth-chord angular width and a rotation of the chord center with respect to the spacecraft
body. Knowing the spacecraft altitude, these then yield a body-frame observation of the nadir vector.
Thus the observed nadir is essentially the center of the Earth horizon as seen from orbit. This measure-
ment (or its corresponding reference vector) must be corrected for deviations of the true Earth horizon
from a nadir-centered circle. A simple, latitude-dependent function corrects for the Earth’s equatorial
bulge. More difficult to compensate are the actual variations in the horizon height as seen by the Earth

" This work was supported by the National Aeronautics and Space Administration (NASA) / Goddard Space Flight Center (GSFC),
Greenbelt, MD, Contract GS-35F-4381G, Task Order no. S$-24280-G.

NASA/GSFC, Guidance, Navigation and Control Center, Flight Mechanics Symposium, Greenbeit, MD USA, May 1999.
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limb detectors. These detectors are sensitive to infrared radiation in a narrow passband. This passband is
chosen to see the atmosphere at wavelengths where it has the least day/night and seasonal variability,
however a certain amount of variability is still present. These horizon height variations constitute nadir
observation errors of up to a few tenths of a degree for low Earth orbiting spacecraft.

While some progress has been made at using historical data for predicting and correcting for
repeatable, seasonal atmospheric variations (References 1, 2, and 3), there remains an as yet unpredictable
component. This may be partly periodic, but not simply seasonal, and partly stochastic, such as large-
scale blooms of relatively warm air into the stratosphere which perturb the isotherms to which the
detector is sensitive (very roughly 200 K at 40 km). It is this sort of error that precludes the use of Earth
sensors as primary attitude sensors on platforms with moderately high precision pointing requirements.

This paper investigates whether the performance of Earth horizon sensors can be improved by esti-
mating the horizon height variations as part of a filter for the attitude. The additional terms in an
augmented state vector provide roll and pitch corrections to the reference nadir vector, known from the
spacecraft ephemeris. The noise model is taken to be a 1¥-order Gauss-Markov process. This relatively
simple model gives the sensor corrections an autocorrelation that decays exponentially in time. The filter
must also solve for the IRU biases to be useful.

Test applications of the filter show that small improvements can be obtained on one axis of the Earth
sensor (this is the pitch axis about which the spacecraft rotates at one revolution per orbit). However, the
filter could not reduce the error about the second axis (the roll axis). Further study showed that this
system can be proven to be unobservable.

Section 2 of this paper gives a derivation of an extended Kalman filter (EKF) for estimating the
attitude, the JRU biases, and the Earth sensor correction. Section 3 presents results from test cases using
both simulated data and flight data from the Total Ozone Mapping Spectrometer-Earth Probe (TOMS-
EP). Section 4 discusses the problems with the EKF and investigates the observability conditions. Section
5 gives discussion and conclusions.

2. Earth Sensor Error Filter

An EKF for Earth sensor systematic errors has been implemented as a modification of the Unit
Vector Filter (UVF) described in Reference 4. The UVF ancestry can be traced to algorithms given in
Reference 5. The approach taken here for Earth sensor error estimation is very similar to that described in
References 6 and 7 for estimating systematic errors in the geomagnetic field used as the reference for
magnetometer based attitude determination.

Figure 1 shows Earth sensor pitch and roll measurements from TOMS-EP spanning 8 orbital periods.
The data already have been corrected for Earth oblateness. Two types of remaining errors can be seen.
There are random errors that seem to be inherent to the sensor and which are adequately represented by
Gaussian distributed white noise. There are also systematic errors that this filter is designed to
compensate. These may occur randomly but persist over a significant fraction of an orbit, or they may be
periodic with frequency components up to a few times the orbital rate. The estimates of these sensor
correction terms are included with the attitude quaternion and, optionally, the IRU biases as the
augmented state vector. The systematic errors presumably derive from variations in the Earth horizon
radiance and are modeled as exponentially-correlated random variables. A single time constant and an

72



TOMS-EP ESA1 Pitch and Roll and ESA1+ESA2 Average Roll (deg)

©
n

&
(3,

ESA1 Pitch (deg)
o

o
w0

ESA1 Roll (deg)
o

=)
o

0 100 200 300 400 500 600 700 800

o
3]

o

ESA Avg Roll (deg)
=
wn

o] 100 200 300 400 500 600 700 800
time (minutes since 19990301.1542)

Figure 1. Earth sensor pitch and roll measurements from TOMS-EP. The top two plots show pitch
and roll from sensor 1, and the bottom plot shows the averaged roll angle from sensors 1and 2.

initial uncertainty are all that are needed for each axis. Also, since the noise sources are physically distinct
for the sensor and the model errors, the white and correlated noise sequences are taken to have no cross-
correlation. Given the periodic sensor errors, a noise model with a decaying sinusoidal autocorrelation
would match the measurements better. However, earlier work on estimating errors in the geomagnetic
field model has shown that this added complexity can be expected to improve the attitude determination
only slightly (Reference 7).

There are two Earth sensors on TOMS-EP. These sensors detect the intersection of the horizon with
scan cones centered on the positive and negative y-axis (that is, on the right and left side of the spacecraft,
taking the direction of flight as forward). The bottom plot in Figure 1 shows the advantage of averaging
these two Earth sensors. With this left/right geometry, the roll errors are significantly reduced. However,
averaging the two sensors does not improve the pitch measurements.

The filter described below follows trends in Earth sensor residuals (that is, measured minus predicted
observation vectors). The correction estimated at a given sensor update decays with time until the next
update. This represents the likelihood that the residual at one moment is predictive of the next. The actual
residual need not decay exponentially, but the estimate of it does. This type of filter was first derived by
Bryson and Henrikson (Reference 8).
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Let x; represent the unaugmented error state vector at time 7;. The filter estimates the error state to
avoid complications from the attitude quaternion normalization constraint in the full state (details are
given in Reference 5). The components of x; can be divided into the attitude error, &, and IRU bias error,
Ab. The state is propagated from ¢ to ¢, according to

Xy =P.x; +w, (1)

where ®; makes use of data from the IRU, corrected for the bias, and where w; is a vector of zero-mean
white noise sequences driving random walks in the accumulated angle and in the IRU bias. In a
continuous-time model, the corresponding white noise source is taken to have spectral density

oI 0
I

2
0 o}, @

Q1) = [

where [ is the 3x3 identity matrix. See References 4 or 5 for the transition matrix ®; and for discussion of
the IRU model and the relationship between Qft) and its discrete-time counterpart, Q,.

The exponentially correlated error term for correcting the Earth sensor is &. This can be a 2-vector
representing the pitch and roll corrections. In a continuous-time model, the evolution equation for &) is

&(r) = -Be(t) +u(z) 3)
The correlation time is 7= 1/8. From Eq. (3), the discrete-time propagation is
£, =Y¢ +u, 4
with
A Q)
g, = E[u,.u,.r] (6)

E[“(‘z Ju’ (s, )] =q(1,)(s, ~1,) (7

The spectral density matrix, g(), is assumed constant. Let p be the variance of &¢), representing a
measure of the uncertainty in the systematic error in the sensor residuals. In the absence of filter updates,
take p to be a constant equal to 6°.,,, I. In order for dp/dt = 0, one must have ¢ = 2fp. Then, evaluating
Eq. (6) leads to

g: =05, (1= )1 ®)

Now, the augmented error state, x%, can be written as

a__xi 9
xi-g,- ()
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The propagation equations for the augmented state and its covariance, P, are

wW.
x;’+1=<1>;‘x,.“+[ ] (10)
u;
P° = ® 0 11
i 0 \Pi ( )
Pt = ®:PD; +0f (12)
Qg 0
b 1
0, [0 Q.] (13)

The sensor residual, y;, for any of the attitude sensors is given as
y; =H;x; +v, (14)

where the sensitivity matrix, H;, models the linear sensor response to state changes, and where the
inherent sensor noise v; is Gaussian distributed, zero-mean, and white with covariance

Rps = E[vv] | = 0% (15)

for the Earth sensor (ES). Also, Rpss = o2pss I for the digital Sun sensor (DSS), and similarly for any
other attitude sensors. The observation model for H, is constructed by expanding the residual to first-order
in the error state, as follows. Let V., be the inertial frame reference nadir vector obtained from the
spacecraft ephemeris. (All the following expressions carry a time subscript i that is suppressed for con-
venience.) The inertial frame unit vector is rotated into the exact body frame as

B, =€ AV, (16)
where A, is the a priori estimate of the attitude matrix and

0 -o, <«

z y
[ax]=| @, 0 -, aan
-a, a, 0

where  is the unknown correction to the estimated attitude needed to rotate it to the true state (the same
a as in the error state in Eq. (1)). The actual measured body frame vector then is taken to be

B =e™A V. _ +e+v (18)

meas est ' ref

The & correction is written here simply as a body frame bias. Similar results are obtained if the correction
is expressed as a rotation in either the body or orbital frame. The exact form of the sensitivity and
transition matrices will change, but for small angle corrections the resulting filter has the same effect. For
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sensors other than the Earth sensor, one drops & from Eq. (18). The estimated body frame measurement
vector is

B,=4,Vy+e, (19)

est " ref
Expanding the residual, y, one finds

y=8B,. -8B

est

= ALV, x]a+aet+y 20

where A€ = £- &, is the correlated noise component of the error state. Thus, the Earth sensor sensitivity
matrix for the augmented state is

Hi =[ “[Ae.«vref x] 05, I3x2] (21

where

@2)

o = O

1
stz =|0
0

and the sensor noise covariance reduces to the uncorrelated part, Rgs, from the term v. For other attitude
sensors such as the DSS or three-axis magnetometer (TAM), one has, e.g.,

Dss =[ —[Ae:rVref x] 0,,; O3x2] (23)

3. Resuits

The filter has been tested using both simulated data and flight data from TOMS-EP. The parameters
available for tuning the filter are the correlation time, 7, the Earth sensor noise parameters, Ogs and o,
the Sun sensor error, Opss, and the IRU noise sources in Eq. (2). A wide range of values has been used in
tests; the filter is not highly sensitive to changes in the tuning. The results presented here take the
correlation time to be 1500 sec (1/4-orbit) and o,,,, = 0.1 deg. The inherent Earth sensor noise is taken as
Ogs = 0.15 deg. The Sun sensor noise is opss = 0.25 deg. The simulated IRU noise is 070 = 10" rad¥sec
and 0%y = 4.6 X 10 rad¥/sec’. The IRU noise was increased to 67, = 10™"° rad¥sec for the TOMS-EP
tests because of the coarseness of the available rate data.

The attitude and orbit scenario and Sun visibility for the simulations were very similar to the actual
TOMS-EP data. The spacecraft is Earth-oriented in a near-circular, Sun-Synchronous orbit with an
inclination of 98.4 deg, period of 99.6 min, and an 11 a.m. local time ascending node. It has two Sun
sensors, fore and aft, so Sun data are available for a brief period over both the North and South Pole. This
provides yaw angle and yaw IRU bias observability.

The advantage of using simulated data is that the true attitude and sensor perturbations are known.
TOMS-EP does not carry a high precision sensor such as a star tracker, so its onboard computer (OBC)
attitude estimate has an uncertainty of roughly the same size as the performance goals of the correlated
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noise filter. More importantly, the OBC attitude is subject to the same systematic errors this filter is
attempting to remove, so direct comparison with the OBC only demonstrates the consistency between the
OBC attitude and the erroneous data used by the OBC for control. For this reason, attitude comparisons
only from the simulated data are presented. The TOMS-EP flight data are used mainly to demonstrate that
the filter is able to remove most systematic errors from the sequence of residuals even with poor IRU
propagation and with sensor noise varying widely from the Poles to the Equator.

In the first test, a standard EKF was used to estimate the attitude and IRU biases using over 8 orbits of
TOMS-EP Earth sensor, DSS, and IRU data. This EKF was used only for performance comparison and
does not account for any noise correlations. A single effective Earth sensor is created from the average of
the left and right sensors, as discussed in Section 2 The residuals obtained from this test are shown in
Figure 2. Systematic oscillations in the residuals can be seen. These are driven by the systematic sensor
errors seen previously in Figure 1.
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Figure 2. TOMS-EP Earth sensor pitch and roll residuals from a standard EKF.
This filter does not attempt to compensate for systematic error.

The same TOMS-EP data next was used with the correlated noise filter. The residuals are given in
Figure 3. This should be compared with the standard EKF residuals in Figure 2. The filter has success-
fully removed most apparent periodicities and systematic errors. These errors, shown in Figure 4, have
been estimated and used to compensate the Earth sensor observations.

All the remaining tests described here were performed with simulated data. The noise characteristics
were all chosen to approximate the TOMS-EP example. Results for the sensor residuals from the EKF
and the correlated noise filter are similar to those shown in Figures 2 and 3. In fact, the residuals sequence
after passing the simulated data through the correlated noise filter is nearly indistinguishable from white

noise (Figure 5).
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Figure 3. TOMS-EP Earth sensor pitch and roll residuals from the correlated noise filter.
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Earth Sensor Roll Residuals for Simulated Data from Correlated Noise Filter
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Figure 5. Earth sensor roll residuals from the correlated noise filter with simulated data.

Next, attitudes from both filters are compared with the truth model. These comparisons are given in
Figure 6. The figure shows the error rotation angles from the true to the estimated attitude. These are solid
lines for the correlated noise filter and dashed lines for the standard EKF. It is immediately

Attitude Pitch, Roil, and Yaw Errors With Respect to Simulation Truth Model
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Figure 6. Attitude error with respect to the simulation truth model for the correlated
noise filter (solid lines) and for the standard EKF (dashed lines).
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apparent that the correlated noise filter fails completely to improve the roll axis (the persistent oscillation
of the roll and yaw errors is due to roll/yaw coupling). There is no improvement over the EKF (solid and
dashed lines are similar). There is some reduction in the periodic error on the pitch axis, but the mean
error is worse. Over many tests, the mean pitch error usually is found to be somewhat worse and its
standard deviation better than that of the EKF.

Thus, although the filter does convert the Earth sensor residuals into a nearly white noise sequence,
there apparently is a conspiracy of errors between the attitude (used to rotate the reference vector into the
body frame) and the estimated systematic error (used to correct the residuals) that leads to attitude
estimates nearly unchanged from the EKF. This inability to distinguish errors in separate state compo-
nents is discussed in Section 4.

Figure 7 shows the results of a test similar to that in Figure 6, however in this case a three-axis
magnetometer (TAM) is included as an additional input sensor. The TAM data significantly improve the
estimate of the pitch angle. The IRU bias estimates also were improved. However, the roll/yaw errors are
still not eliminated.

Attitude Pitch, Roll, and Yaw Errors With Respect to Simulation Truth Model
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Figure 7. Attitude error with respect to the simulation truth model for the correlated
noise filter (solid lines) and for the standard EKF (dashed lines).
Input to the filters include data from 1 Earth sensor, 2 DSSs, and 1 TAM.

4. Observability

The tests given in the previous section demonstrate that there is a major problem with estimating
Earth sensor errors simultaneously with the attitude and IRU bias. This section presents an analysis
showing that the problem derives from the physical system and is not simply an error in the filter
equations or implementation.
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The observability matrix, =, will be constructed for a deterministic system similar in the essentials to
the TOMS-EP scenario. Discussion of this type of analysis can be found, e.g., in Reference 9. The
construction requires the observation sensitivity matrix and the state transition matrix.

The error state transition matrix for the attitude, IRU bias, and 2-component Earth sensor correction
over a short time interval At is approximately

1 0 wht At 0 0 0 0]
o 1 0 0 A 0 00
oAt 0 1 0 0 A 00
¢=00010000 o8
o 0 0 0 1 000
o 0 0 0 0 1 00
o 0 0 0 0 0 10
Ll o 0 0 0 0 0 O 1]

where @is the orbital pitch rate (0.001 rad/sec) about the spacecraft negative y-axis. The correlation time
is assumed to be much larger than As so the W_block (see Eq. (11)) is near unity.

The sensor measurements for this case can be taken to be a single DSS observation followed by
several Earth sensor observations. The sensitivity matrices are given in Egs. (22) and (23). The body
frame directions of the reference vectors are needed in these expressions. For the Earth sensor, the nadir is
always near the body z-axis. For the Sun sensor, the Sun becomes visible nearly along the body x-axis as
the spacecraft flies over the Pole. This gives

0 -1 000010
H§S=10000001 (25)
0O 0 000O0O0O
and
00 0 00O0O0O
f,ss=00—100000 (26)
01 0 00000
The observability matrix (Reference 9) then 1s
_HI‘;SS-
Hs
Hys9
Ha 2
E= ”¢3 @7
HEs9
Hio'
His¢’
| Hes#' |
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The system is observable only if the rank of = equals the dimension of the state vector. The rank of = can
be determined either numerically or by careful inspection. In this case, the rank is found to be only 7, so
the full 8-component system state vector cannot be determined.

5. Conclusions

In an attempt to improve the performance of Earth sensors for spacecraft attitude determination, a
simple and well-known technique was used. This involved augmenting the system state with components
designed to compensate for systematic errors in the reference model. The noise model was taken as a 1%-
order Markov process, which yields an exponentially decaying autocorrelation for the estimated error.
However, it was found that this state is not observable given the geometry of the sensors. Inclusion of a
magnetometer did not entirely remove the problem. This is surprising because the time-dependence of the
observed geomagnetic field over several orbits was expected to give full observability of the state. Further
study of this problem is needed. ‘

If the observability question can be resolved, this type of filter could prove to be valuable for use both
in ground support and in flight software. There is only a little added complexity in the filter imple-
mentation compared to an EKF for attitude and IRU bias. The new filter is only mildly sensitive to the
tuning parameters, so robustness and in-flight tuning should not be problems. The main potential benefit
would be to eliminate the need for predicting seasonal horizon radiance variations. Rather than using
empirical fits to historical data, each spacecraft would estimate its own corrections for its own orbital path
and timeframe.
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ABSTRACT

An effective method of terminal point guidance is to employ influence coefficients, which are solved
from a set of differential equations adjoint to the linearized perturbations of the equations of motion about
a reference trajectory. Hence, to optimize this type of guidance, one must first optimize the reference
trajectory that the guidance is based upon. This study concentrates on various methods to optimize a
reference trajectory for a Martian aerocapture maneuver, including a parametric analysis and first order
gradient method. Resulting reference trajectories were tested in separate 2000 6-DOF Monte Carlo runs,
using the Atmospheric Guidance Algorithm Testbed for the Mars Surveyor Program 2001 (MSP 01)
Orbiter. These results were compared to an August 1998 study using the same terminal point control
guidance algorithm and simulation testbed. Satisfactory improvements over the 1998 study are amply
demonstrated.

INTRODUCTION

The premise of capturing a low lift over drag (L/D) vehicle through a single atmospheric pass (i.e.,
aerocapture) is arguably the most popular, yet never attempted, method for reducing the amount of on-
board propellant necessary to change a satellite’s orbit from hyperbolic to elliptic. . Aerocapture has been
seriously considered in several programsﬁ However, acrocapture has been consistently rejected, partially
due to the lack of a guidance routine that meets the required success criteria in Monte Carlo simulations.

A primary reason for the lack of an effective acrocapture guidance routine is the inherent complexity
of an aerocapture maneuver. An aerocapture maneuver differs from its landing counterpart in that the
degree of complexity is increased due to the target conditions. Specifically, a landing mancuver targets to
a specified range (at zero altitude), which is one state variable in the atmospheric re-entry state vector.
Conversely, an aerocapture maneuver targets to a combination of velocity, flight path angle, and altitude
upon atmospheric exit.

The objective of this study is to improve upon a previous study' of capturing a low lift over drag (L/D)
vehicle into a Martian orbit using "erminal control" to guide the vehicle through an aerocapture
maneuver. Terminal control is a guidance method that drives a vehicle to a terminal condition or set of
terminal conditions. The purpose of an aerocapture maneuver is to use atmospheric drag to change a
satellite's orbit from hyperbolic to elliptic; thus saving propellant that would otherwise have to be
transported to Mars. Since aerocapture cannot raise periapsis above the atmosphere, propellant must be

* Acrospace Engineer, Ascent/Decent Dynamics Branch, Mail Code DM42, email theodore.u.rol@jsc.nasa.gov, phone 281 483-6894

T Aerospace Engineer, Vehicle Analysis Branch, Mail Stop 365, email ¢.m.queen@larc.nasa.gov, phone 757 864-6610

! Aerospace Engineer, Vehicle Analysis Branch, Mail Stop 365, email s.a.stricpe@larc.nasa.gov, phone 757 864-4512

§ Orbital Transfer Vehicle studies (1984-85), Acroassist Flight Experiment (AFE) (1984-89), Mars Sample Retumn Mission (1986-88), Mars
Surveyor Program (MSP) 2001 Orbiter (1997-98), Mars Surveyor 2005 (current)
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used to circularize the final orbit. The amount of propellant that is required to place a satellite in a
circular orbit is proportional to the required change in velocity or AV, AV is completely determined by the
velocity, flight path angle, and altitude upon atmospheric exit. These exit conditions constitute the
acrocapture terminal target. The required AV following the aeropass measures the success of the terminal
control guidance.

Several Martian acrocapture guidance strategies have been demonstrated in the Atmospheric
Guidance Algorithm Testbed for the MSP *01 Orbiter. Tigges et al’ demonstrated the use of an analytic
drag aerocapture controller (ADAC) about a reference trajectory. The ADAC is a derivative of the

The algorithm described in this paper had the highest success rate (96.1%) in the final 2000 cases 6
degrees-of-freedom (DOF) Monte Carlo simulation of all the guidance algorithms described above.
However, this success rate did not meet the 99% success requirement. The difficulty with achieving the
MSP 01 success criteria can be attributed to the relatively low available AV (130 my/s), the tight
inclination range (92.92° + 0, 1°), the vehicle’s low lift over drag ratio (0.18), navigational errors, and the
dynamic nature of the Martian atmosphere. Partially due to the failure of any algorithm’s ability to satisfy
the success criteria, aerocapture was deleted from the MSP °01 mission baseline. Given the inherent
difficulties associated with the MSP "01 Orbiter’s aerocapture maneuver, the authors’ believe the MSP ’01
testbed represents a substantive environment to further improve their guidance algorithm.

The paper is organized as follows: First, a terminal point guidance algorithm using influence
coefficients is described. The strategy is to apply optimal control theory on atmospheric re-entry
equations of motion assuming a constant bank angle trajectory to obtain the desired apoapsis. Second, a
parametric analysis of entry flight path angle, constant bank angle, and exit AV is examined to define a
reference trajectory. Third, a first-order gradient method is investigated to further optimize a reference
trajectory using a varying bank angle profile. Fourth, several closed-loop-tuning methods are then
discussed. Finally, a plane change maneuver to correct inclination errors is proposed. Numerical results
and data are presented where applicable.

SYMBOLS

Ca = coefficient of drag

C, = coefficient of lift

D = drag, force along the total velocity vector (C,S/2)pl?

¥l = in-plane equations of motion expressed as a function of the in-plane state variables and
control vector

g = gravity

H = angular momentum

h = geocentric altitude

hy = scale height

&J = vanation in J due to a variation in a control vector for a fixed terminal time

J = generic performance index

K = overcontrol parameter

L = lift, force normal to the total velocity vector (C,S12)pl?

LD = lift to drag ratio
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mass of vehicle

re = cquatorial radius

S = vehicle reference area

s distance

t = time

1, = final time of a trajectory

1, = initial time of a trajectory

u = generic control parameter

AV = variation in a reference AV due to a variation in a control vector for a fixed terminal
time

AV = difference in velocity required to place a satellite in its desired orbit after an aerocapture
maneuver (the performance index used as a target during an aerocapture maneuver)

|4 = total velocity

Ve = circular velocity

x = in-plane state variables (i.e., the state vector)

x = derivative of state variables with respect to time

Sx perturbation of the state vector

€ = energy per unit mass

¥ = flight path angle, positive for climb

8 = influence coefficient

n = gravitational parameter for Mars

® = performance index expressed as a function of the in-plane state variables and time

o] = atmospheric density

* = indicates values taken from the reference trajectory

GENERAL THEORY

The general theory behind terminal control is well documented in Bryson and Ho’s Applied Optimal
Control® Terminal control utilizes a reference trajectory and a set of influence coefficients. These
coefficients can be solved from a set of differential equations adjoint to the linearized perturbations of the
equations of motion about a reference path.’

An optimization problem for dynamic systems involves the following differential equations:

where du(t) is determined by:

and the boundary conditions are:

x= f(x,u,t) D
oT
@) =-»" (t)gf; @)
& = &7 (,)0x(ty) + 1/ [(x’ %jsu]dt 3)
x(t,)is given @)
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_ a9(t)

T

A= 5
=7 “ (5)
Note that the particular solutions to equation 1 and 2, respectively, are:
_l_ T t ( Tg.)
Sx(t) = 0 [x (1)ox(tp) + [} [ AT JBu (6)
Fa
-| =ar
AMt)=e I5 Q)
For a detailed derivation of 6 and 7, refer to reference 1 Appendix A.
From equations 3 and 6, it follows that:
&7 = AT ()x(r) @®)

Equation (8) provides an important relationship between the effect of a state perturbation on the
performance index at any given time.

APPLICATION OF GENERAL THEORY TO AN AEROCAPTURE MANUEVER

The first step in applying the general theory to an aerocapture manecuver is the selection of a
performance index (J). The selected performance index was the exit AV, This parameter was selected
because it is the primary aerocapture requirement metric from the MSP ‘01 Orbiter project baseline. The
exit AV is a suitable performance index because it can be defined in terms of the in-plane state variables at
a trajectory’s final time.

The following matrices are based on in-plane state variables for an atmospheric re-entry vehicle.
s(t)
Vv
Y(®
h()

x(1) = &)

Vcos(y)
( - )
=| = + gsin(y)
m

flx(),u(®]= L cos($) 1% g
my e oS
V sin(y)

A0
Ay (®
(D)
A,

(10)

A = (11)
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[0 cos(y™) V" sin(y™) 0 ]
. D
2D .
0 T -goos(y") -—/l
o Vom hy "
z (12)

o . L/ cos($) .
0 L°°f(“,’)+[ L& ]coS(Y') —( . .-—%—)sin(y‘) - /'" Y estr)
m@Y \n+h ¥ )2 re+h Vih' (r +h*)

e

0 sin(y") vV oos(y”) 0

Where the superscript (*) indicates values from a reference trajectory. Further, no angle of attack control
was assumed in our analysis.

Substituting the matrices defined above into the equations defined in the general theory derives an

optimization equation.
T (T
s ="+l 5 (13)

AV (t ;)
AT(t,) = ax(tff) (14)
oAV
’~<’f>=(‘ax—) (1)
t=t,

Since we have chosen the change in our performance index to be zero at atmospheric exit
(SAV(tf) =0), we can set the left-hand side of equation 13 to zero and solve for du. To solve for du, we

must assume du is a constant.
T
e,

T
[z (% x)d

Thus, we have essentially constructed a control parameter (Su ) that nulls out the change in the reference

AV(tf).

Su= (16)

Next the numerator on the right hand side of the above equation can be re-written with feedback
terms. These feedback terms were changed to altitude rate and drag acceleration because they are easily
measured quantities. If a continuous determination of the state, x, is made, then a continuous feedback
control law results. Further, energy was used as the independent variable because it was determined that
velocity had the tendency to converge on a constant value as the vehicle approached atmospheric exit.

NE e (e [DXe)
_(XV(E)SV(E)’vaf{y(s)]W)- Do) 5[%’])

o=
a7 },\
w2

Finally, let’s evaluate the integral in the denominator on the right hand side of the above equation.
One can define this integral as an additional influence coefficient.

an
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T
k,=I{f(% der (18)

The time derivative of this influence coefficient, a’tu , IS:

d. D*(t
P - 55 =2
dt mV *(f)
Thus. a control vector that nulls out errors in the performance index at atmospheric exit has been

(19)

defined in terms of reference trajectory data and easily measurable quantities. Substituting %cos $ as our

control vector results in the following equation.

MO (5 ) TEME .
(—A,,(s)(V(s)-V' (e))) [V e (h(e)—lf'(s)J—%)"s.(LIe%n_D (r%)]

é cosd(e) =é cos*(g) + Y n (20)
We chose to define our gains as follows:
mh, (e)A, (e)
A=——7m—"" 21
) n
A (®)
S— 22
Vo y(e)] @
F3=2%,(g) 23)
Fa=2,(g) 29

The definition of the above gains results in the following expression for our control law,

% cos¢ = % cos” — % {F 3(V(s) +V° (8)) +"7(;7(8) —;1'(8)] +F([D(%J—[D‘(%D} 25

The above equation represents perturbation feedback control or control in the vicinity of a reference
path, where X represents an overcontrol factor. The key to this problem is finding an optimal reference
path. If an optimum reference path is used, the feedback gains will yield neighboring optimum paths that
target to the same terminal conditions as the reference trajectory.

REFERENCE TRAJECTORY OPTIMIZATION THROUGH A PARAMETRIC ANALYSIS

The reference trajectory in the proposed algorithm is critical, because an effective terminal point
guidance algorithm that uses influence functions is heavily dependent on an “optimal” reference
trajectory. An optimal trajectory is not necessarily the trajectory that results in a minimum or maximum
cost function. Certainly, minimizing or maximizing the cost function is important, but when dealing with
a closed-loop perturbation feedback control method, one must account for the presence of off-nominal
conditions (i.e., dispersions). This reservation is accomplished by analyzing the control vector’s profile
(e.g., bank angle [¢] in our problem). If the reference ¢ profile results in full lift up or down data points,
there is a good chance that dispersions will destroy the integrity the guidance algorithm. Hence, for the
aerocapture problem, “optimal” is a balance of minimizing the cost function and obtaining a robust
reference ¢ profile.

Miele and others® ° have shown that if only the atmospheric entry speed is fixed, then the entry flight-
path angle can be chosen such that the trajectory that yields a2 minimal AV for post-aerocapture orbital

90



insertion is an one-arc trajectory flown at full negative lift. Evans and Dukeman'® identified that one
must simply determine the shallowest flight-path angle such that, at full negative lift, the vehicle attains
the target apoapsis radius at exit. Further, studies have shown that these trajectories are characterized by
near-minimal values of peak heating rate and structural loading."'

To verify the above, a parametric analysis of entry flight path angle, constant bank angle, and exit AV
was accomplished within the Atmospheric Guidance Algorithm Testbed, First, optimization runs were
performed for various fixed entry flight path anglcs. The purpose was 1o identifv a range of constant bank
angles that resulted in exit AV measurements within an acceptable tolerance about the AV criteria. With
this data, a table of entry flight path angles and constant bank angle profiles was built. A script was used
to perform multiplc runs utilizing the Atmospheric Guidance Algorithm Testbed. The output file
consisted of the entry flight path angle, constant bank angle, and the exit AV. A graph of this output file
is displayed below.

MSP 01: Param atric Analysis of Initial Gam m a, Bank Angle, and Finat Delta V
180

LT
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FinalDelta V (m/s)
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Figure 1 “Parametric Analysis of Initial Flight Path Angle, Bank Angle, and Final Delta Velocity”

Each “spike” represents the bank angle range for a specific entry flight path angle. The entry flight path
angles ranged from -11.6° through -10.4°. The exit AV range (i.e., the y axis) was limited to the area of
interest for the MSP °01 mission. The graph’s trend verifies the trajectory that results in the minimum
exit AV occurs at the shallowest initial flight path angle flown at a 180° bank angle profile. Greater
sensitivity to bank angle changes occurs as the entry flight path angle become shallower. Small
incremental changes to the entry flight path angle can mean the difference between achieving the desired
orbit and skipping out or resulting in extremely large exit AV values. The authors were concerned that
this sensitivity would manifest itself in closed-loop runs, especially where the nominal entry flight path
angle is on the shallower end. In other words, the authors were concerned that entry flight path angle
dispersions would have consistent disastrous consequences. However, the results clearly indicate the
contrary. An entry flight path angle of -10.36°, which translated to a 176.5° bank angle profile, was used
as the shallowest initial flight path angle reference trajectory. From this starting point, several reference
trajectories were examined at varying initial flight path angles and bank angle profiles. The closed-loop
tuning methods, described later in this paper, were used in all cases. The results from 2000 6-DOF Monte
Carlo runs are presented in the next table.
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C Trajectory Total Actual Total Nav. Actual AV Nav. AV Avg. AV Actual j Nav. i Avg. i

: | Parameters Success Success Success Success Success Success

. Rate Rate Rate Rate Rate Rate

»

Rgmt's 2 99% n/a AVS 130 mvs 92.82° <i593.02°

1998 Study 96.1% 97.3% 98.67% 98.75% 107.2 nvs 98.2% 99.35% 92.93°

1| y=-10.36° 97.3% 98.45% 98.65% 98.75% 107.2 m/s 98.2% 99.35% 92.93°
$=176.5°

2 | y=-10.38° 97.05% 98.4% 98.95% 98.9% 1055 m/s 98.05% 99.45% 92.93°
$=160.1°

3 | y&-10.40° 97.3% 98.85% 99.3% 99.4% 106.5 m/s 98% 99.4% 92.93°
$=152.3°

4 | y=-10.45° 95.95% 98.25% 98.9% 99.05% 107.9 nvs 97.05% 99% 92.93°
$=138.0°

S | y=10.5° 94.45% 96.85% .97.4% 97.95% 1118 m/s 96.85% 98.8% 92.93°
$=129.2°

Table 1 “Reference Trajectory Statistical Summary”

The total success rate was based on the formula that a Al miss, an inclination miss, or both constituted a
failure. Upon first analysis, the total actual success rate increased by approximately 1% from the 1998
study for Cases 1, 2, and 3. The success rate dropped off in Cases 4 and 5, primarily due to the higher
nominal exit AV in those cases. In all cases, the sensitivity to small incremental bank angle changes in
the open loop environment did not manifest itself in closed-loop runs. Given that cases 1 and 3 resulted
in the same success rate, further analysis was accomplished on the AV distribution for these cases. Case 1
resulted in a higher average AV than Case 3. This phenomenon was contrary to the trend of a lower
average AV as the entry flight path angle became shallower. The AV distributions for Cases 1 and 3 are
presented below.

Distribution

‘: 90< 130< 170< | 210< | 250< | 290< | 330< | 370< | 410< | 450< | 490< 530< 570<
: AV AV AV AV AV AV AV AV AV AV AV AV AV
# | <130 | <170 | <210 | <250 | <290 | <330 | <370 | <410 | <450 | <490 | <530 | <570 <610
14§ 1973 19 2 1 1 1 1 0 0 1 0 0 1
3| 1986 13 1 0 0 0 0 0 0 0 0 0 0

Table 2 “AV Distribution for Cases 1 and 3”

From the above table, it becomes obvious that Case 3 is preferred. Aside from the fact that Case 3 had a
higher AV success rate than Case 1, the more striking characteristic is the distribution of Case 1.
Although Case 1 did not miss the AV target often, when it did miss, it missed much worse than Case 3.
The effects of a nominal bank angle of 176.5° are clearly displayed in Case 1’s AV distribution. Case 1 is
more susceptible to bank angle saturation because its nominal profile is very close to 180°. If the nominal
bank angle is relaxed, as in Case 3’s 152.3° profile, the occurrence of extremely high Al values
disappears. Thus, these results highlight the fact that an “optimal” reference trajectory is a trade between
a minimal A) value and a robust bank angle profile.

REFERENCE PATH OPTIMIZATION THROUGH A FIRST ORDER GRADIENT METHOD

The previous section examined constant bank angle trajectories. This section investigates the
potential for incorporating optimization theory to calculate a varying bank angle trajectory. Bryson and
Ho'? discuss numerous iterative procedures to solve nonlinear two-point boundary-value problems, such as
in an aerocapture maneuver. The first-order gradient method was selected for analysis because of its
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extensive use and ability to provide its own convexity as well as the unique combination of known and
unknown quantities for this particular problem.

A first-order gradient algorithm for solving the above class of problems is presented below:

STEP (a). Estimate a sct of control variable histories, #(f) = ¢(t), and a terminal final time (¢). Integrate
the system equations forward with the specified initial conditions using the control variable history and 1.
Record x(1), &(1), w(tg=h(ty,

dav r
_— = ,and 26
l: dt ]t=1, [p f]r:rf an (26)
v
{ = L, =h(t,). @n

/
As stated above, the reference trajectories utilized in parametric analysis study were put 1o use. Further,
the Atmospheric Guidance Algorithm Testbed which uses the Program to Optimize Simulated
Trajectories (POST) as the main integrator, was employed to calculate (i.e., forward integrate) the
reference trajectory.

STEP (b). Determine a 4x1 vector of influence functions p(t) and R(t). The vector p(t) represents the
influence function associated with minimizing the cost function [AV(t)], while R(f) represents the
influence function associated with the constraint [A(tp]. This step is accomplished by backward
integration of the following differential equations:

0 i=h

. T
p=‘(£ p, where p;(t) = (%V“) i=sby .
l=ff
. (a )T Loi=h 29
R=-7% R, where Ri(tf) = 0 i=sVy @9

STEP (¢). Simultaneously with STEP (b), compute the following integrals:

v rof (o)
) Rf-aiuw I(EZJ Rdt , [scalar] (30)
P Rt ) -,(_af;)’
IJW—IW—I[O‘D L 2] Rat , [scalas] (31)
¢ T
1= o Lw (L) pat, tcatar (32)

where W is an arbitrary positive scalar weighting factor used to help minimize the cost function [AVt)).
The choice of W is empirically made based on 1) the discrepancy between the actual dAV(t) and its
predicted value and 2) the desired step size, where smaller steps are recommended. The predicted value
of dAV(ty is determined from the following equation:

dAV(tf)przdicud = ——Il;\:(prf)(prf +V;l)] - (IJJ + IJVV) (33)

r=t,
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STEP (d). Choose a value of A(t) to cause the next reference solution to be closer to the desired value of
h(tp. For example, if the starting () does not equal the desired /(t), one might choose dacty= -e(h(ty-
1), where ¥ is the desired value.

STEP (e). Determine v from the following equation:

1 .
[dh+1w +—prh]
b !=lf

v=- — (34)
[1 +—h ]
=t

Wb
=r
where b is an arbitrary positive scalar weighting factor used to help drive ()= .

STEP (f). Calculate a new final time by adding 4t to the original f;, where:

dt, =—%(prf+vl.1j 35)

t=lf

STEP (g). Calculate a new bank angle (¢) profile by adding 5¢ to the original bank angle profile. 3 is
determined by the following equation:

J
[(p(r)m(t)v)’ —(r)}
50(r) = - i
w
Use the new f value to calculate a time to go percentage. Then multiply the time to go percentage to the

original f, value to properly cross-reference the original reference trajectory data to the new ¢ profile. For
example, the time to go percentage can be calculated by the following equation:

(36)

t - to
fHg = ———— 37
8 = ewt =t G7)
And the proper cross-reference can be made by the following equation:
Larer = tg(0ldt ; —15) + 1, (38%)
Repeat STEPS (a) through (g) until 4(zy equals the desired value,
[(_"AV +vh)] -0, (39)
dt
t=t 7
Iy -1,1,1, =0, and (40)
H, >0fromt,>t>1¢, 41

to the desired degree of accuracy. A MATLAB program was developed to perform STEPS (b) through (g).
The following set of graphs is representative of how the first order gradient method modifies a constant
bank angle profile.
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Figure 2 “Comparison of Bank Angle Profile”

Although use of this method did result in further reductions in the exit AV, these reductions were not
significant (1-2 m/s reductions). It became apparent that first order gradient methods usually show great
improvements in the first few iterations, but have poor convergence characteristics as the optimal solution
is approached.

Given the above, a second-order gradient method was investigated in hopes of improving
convergence. But second-order methods require three conditions: a convexity condition, a normality
condition, and a no-conjugate point condition. These conditions must exist throughout the initial
trajectory and all subsequent iterations. Meeting all three conditions is not trivial. Several trajectories
and optimization schemes were attempted in hopes of meeting these three conditions. These attempts
were unsuccessful.”

CLOSED-LOOP-TUNING METHODS

Several closed-loop-tuning methods were analyzed with varying results. These included the use of a
new control parameter from the study documented in reference 1 as well as a second reference trajectory
and bank angle margin profile for high drag acceleration cases.

The original study (see reference 1) utilized cos(¢) as its control parameter. Use of this control
parameter assumes the reference L/D profile will be the same in all dispersed cases. This assumption, of
course, is not correct. Thus, using cos($) as the control parameter resulted in a less than optimal bank
command issued by the guidance algorithm. To correct this situation, L/D*cos(¢$) was incorporated as the
control parameter.

After executing several 2000 6-DOF Monte Carlo cases, it became apparent that certain cases (=15)
consistently resulted in an exit AV failure. Upon detailed inspection, most of these cases displayed high
drag acceleration dispersions. In an attempt to increase the success rate, a second reference trajectory was
incorporated. The goal was to measure the difference between the actual drag acceleration and the

[T L)

reference drag acceleration. When this difference exceeded a pre-defined limit for more than “n” events,

** The authors would welcome any suggestions on this issuc as well as any other aspect of this paper.
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a switch over to the second reference trajectory was accomplished. Although this method decreased the
magnitude of dispersions, the overall exit AV did not make significant improvements. This was primarily
due to the fact that a reference trajectory with a higher drag acceleration profile resulted in a higher
reference exit AV. Maintaining the triggering mechanisms, a further attempt was made to incorporate a
second commanded bank angle limit for the higher drag acceleration cases. The commanded bank angle
is limited to provide inclination control Nominally, the operational bank angle range was 25° through
155° for a positive roll and -15° through -165° for a ncgative roll. The asymmetric bank angle limit was a
result of the MSP 01 Orbiter’s near polar orbit coupled with the planet’s oblateness and rotation effects.
These effects and near polar orbit resulted in a tendency of the vehicle to naturally drift towards a smaller
inclination, which coincided with a negative roll. Thus, less bank angle reserve was required for a
negative roll, which provided greater in-plane control. For high drag acceleration cases, inclination
control was sacrificed by relaxing the operational bank angle range to 15° through 165° for a positive roli
and -8° through 172° for a negative roll. This attempt was based on the logic that higher drag
acceleration dispersions require greater in-plane control authority. By “opening” up the commanded bank
angle limit, greater in-plane control authority is achieved.

COMBINING THE AV AND INCLINATION REQUIREMENTS INTO A SINGLE
PERFORMANCE INDEX

The MSP "01 Orbiter aerocapture success criteria consisted of two requirements: 1) an exit AV < 130
m/s and 2) 92.82°< i < 93.02°. An inability to meet the AV requirement, inclination requirement, or both
resulted in a failure. However, there were numerous cases where the exit AV was well under the 130 m/s
requirement, but failed to meet the inclination requirement. In such cases, any remaining Al theoretically
could be used to perform a plane change to meet the inclination requirement. Typically, plane change
maneuvers are expensive in terms of AV. But the required plane changes are small in our problem. Thus,
an analysis on how much A) was necessary to correct final inclination errors was accomplished and is
documented in this section.

We seek to do a plane change by means of an instantaneous burn at the ascending node. The burn
will be perpendicular to the velocity vector and parallel to the local horizon. The figure below depicts this
maneuver. o

eerean,

Figure 3 “Plane Change Geometry”
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Based on the above figure, the plane change equation is:
AV =2, sin(éz‘l) 42)

where V. is the circular velocity.

The above formula combines the previous two mission criteria into one performance index. Based on
the way the success criteria were previously defined, both exit AV and inclination requirements were of
equal importance. However, by combining both requirements into one performance index, the exit AV
requirement assumes its rightful place as the primary criterion. The exit AV should be the primary
criterion because an exit AV failure cannot be corrected while an inclination failure may be corrected.
Thus, an aerocapture guidance algorithm should be designed with greater emphasis to minimize the
number of exit AV failures and less emphasis on inclination failures.

The following graphs display the required AV as a function of plane change for an areodetic altitude
of 400km. The graph on the right zooms in on a reasonable available A)” range (i.e., AV that is available
after the required circularization burns).

Deta V Required for Plane Change-MSP 01 Delta VV Required for Piane Change—MSP 01 (Expanded Box)
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Figure 4 “Delta V Required for Plane Change”

Given that the average A} values for the various 2000 6-DOF Monte Carlo runs ranged from 105.5 to
111.8 nvs (ref. Table 1), the reserve AV averaged between 18.2 and 25.5 m/s. Thus, based on the graphs
in Figure 4, there is on the average at least 0.325° of available plane change AV. Applying the above
Equation 42 to the 2000 6-DOF Monte Carlo runs results in an updated list of success rates.

97



c Trajectory New Total New Total Previous Previous

: Parameters Actual Nav. Totatl Actual Total Nav.

e Success Success Success Success

[ Rate Rate Rate Rate

1998 Study 98.6% 98.7% 96.1% 97.3%

1 ¥=-10.36° 98.65% 98.75% 97.3% 98.45%
$=176.5°

2 v~=-10.38° 98.9% 98.9% 97.05% 98.4%
$=160.1°

3| y~-10.40° 99.3% 99.4% 97.3% 98.85%
$=152.3°

4] y=-10.45° 98.85% 99% 95.95% 98.25%
$=139.0° |’

5 v~-10.5° 97.2% 97.8% 94.45% 96.85%
$=129.2°

Table 3 “Success Rate with Additional Plane Change Maneuver”

The graphs in Figure 5 depict the effect of a plane change maneuver for those cases that failed to
meet the inclination requirement. Data from case No. 3 (y=-10.40°, $=152.3°) were used for these
graphs.

Detta V vs. Inciination—No Plane Change Delta Vvs. Indiination-With Plane Crange
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Figure 5 “Delta V / Inclination Box—No Plane Change and With Plane Change”

Notice that in all failed inclination cases, there was enough reserve AV (post orbit circularization) to
perform a plane change that fixed all inclination errors. The maximum AV required to meet the
inclination requirements was 7.3101mv/s, which translated to approximately a 0.125° inclination error.

CONCLUSIONS

This work improves upon a 1998 study on Martian aerocapture terminal point guidance for the MSP
’01 Orbiter. Terminal point guidance utilizing influence coefficients has been proven an effective method
for a Martian aerocapture maneuver. This method has displayed excellent performance, even under
adverse conditions such as low L/D vehicles, Martian dispersions, relatively low available AV, a tight
inclination range, and navigational errors. The study of reference trajectory optimization has resulted in
acceptable improvements based on the MSP 01 success criteria. A parametric analysis was used to
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determine the constant bank angle profile that minimizes the post-aerocapture AV required to achieve the
final orbit conditions. Unfortunately, an attempt to use a first-order gradient method to further optimize
the reference trajectory by varying the bank angle profile did not result in satisfactory improvements. The
combined usc of the reference trajectory optimization work, additional closed-loop tuning methods, and a
proposcd plane change mancuver to correct for inclination failures increases the success ratio to as high as
99 3% in 2000 6-DOF Monte Carlo runs.
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ABSTRACT

The National Aeronautics and Space Administration (NASA) selected Lunar Prospector as oné of
the discovery missions t0 conduct solar system exploration science investigations. The mission is NASA’s
first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In
keeping with discovery program requirements 10 reduce total mission cost and utilize new technology,
Lunar Prospector’s mission design and control focused on the use of innovative and proven trajectory
analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center
have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver
planning, orbit determination support, and product generation.

At the end of 1998, Lunar
Prospector completed its one-year
primary mission at 100 km altitude
above the lunar surface. On
December 19, 1998, Lunar
Prospector entered the extended
mission phase. Initially the mission
orbit was lowered from 100 km to a
mean altitude of 40 km. The altitude
of Lunar Prospector varied between
25 and 55 km above the mean lunar
geode due to lunar potential effects.
After one month, the lunar potential
model was updated based upon the
new tracking data at 40 km. On
January 29, 1999, the altitude was
lowered again to a mean altitude of
30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude
is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation
including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar
Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions.
This extended mission phase of six months will enable LP to obtain science data up t0 3 orders of magnitude
petter than at the mission orbit.

This paper details the trajectory design and orbit determination planning and actual results of the
Lunar Prospector extended mission including maneuver design, eccentricity & argument of perigee
evolution, and lunar potential modeling.
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INTRODUCTION

spacecraft is a spin-stabilized graphite-epoxy drum, 1.4 meters in diameter by 1.22 meters in height, with
three radial instrument booms located 120 degrees apart. Attitude, spin rate, and velocity control are
provided by a blowdown monopropellant hydrazine propulsion subsystem using six 22 N thrusters.
Telemetry and command functions are provided by a single S-band transponder through either a medium
gain or an omni-directional low gain antenna mounted on a mast aligned with the spacecraft spin axis. The
total spacecraft mass at launch was 296.4 kg, including 137.7 kg of hydrazine propellant. At the beginning
of the extended mission, 17.41kg of fuel, 12.61%, was available.

Extended Mission Profile

presented (ref 1 and 2). The Goddard Space Flight Center’s Guidance, Navigation, and Control center
(GN&CC) and the AMES Space Projects Division were tasked to provide mission design, maneuver support
and orbit determination. These data and related products such as latitude and longitude, occultation, and
station visibility can be found on the GN&CC LP Product Center web site at hrtp.//fdd. &sfc.nasa.gov/ip .

The goal of the six month LP extended mission is to collect low altitude instrument measurements
that provide higher resolution data (particularly from the magnetometer and Neutron spectrometer) to
complement measurements collected during the nominal mission, The extended mission design goal was to
place the spacecraft in a mean 25km altitude orbit while restricting altitude excursions between a minimum
of 10 km and a maximum of 40km. This mean altitude was later changed to 30km as discussed herein. As

While a similar strategy is used for maintaining orbital eccentricity and argument of periapsis as
that used for the primary mission, the lower altitude associated with the extended mission reduces the range

the lower altitude increases the sensitivity of the orbit to perturbing gravitational forces and increases the
influence of initial orbit conditions on orbit evolution. While the altitude is much lower, the orbit mean sma
only changed from 1838 km to 1763 km, a 4% decrease. The primary mission orbital altitude was subject to
a +/-20 km science constraint about the mean 100 km altitude and varied on this order (+/-15 km). The
argument of Periapsis (0) and eccentricity (e) also evolved in a predictable pattern. This evolution pattern
Wwas one of the first astrodynamic verifications of the primary mission. The variation in both e and o is a
direct result of the lunar potential and requires the latest potential and the ability to model these
accelerations. Frozen orbit e and conditions of ~0.04 and 270 degrees result in either a lunar impact while
trying to meet the required science goal of a 30 km mean circular altitude or drive the apoapsis higher than
allowed while maintaining a low periapsis. Therefore, a Quasi-Frozen Lunar Orbit (QFLO) method is being
used (ref 3).

Figures 1 shows a phase space plot of the evolution of the primary 100 km orbit with e the radial
component and o the angular component. While the figure shows a predictable evolution, the constraints of
the extended mission require a watchful eye on the selenographic altitude and orbit eccentricity. A
predictable orbit evolution is made possible by the correct usage of high fidelity modeling of the lunar
potential, the Earth and sup gravity, solar radiation pressure accelerations, and maneuver perturbations. For
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the extended mission a 100 degree and order lunar potential model was utilized for orbit determination,
orbital predictions, and maneuver planning. A 75 degree and order had been used for the primary mission.

Figure 1: Phase Space Plot of Eccentricity vs. Argument of Periapsis

To help understand the evolution, a simple geometric method is devised to adjust the orbit
evolution curve in phase space coordinates in order to minimize excursions in eccentricity, and thereby
arrive at an optimum argument of periapsis starting condition. Figure 2 shows an example of a December
19, 1998 55-day transition orbit (40 km +/-15 km initial altitude) with an original o value of 240 degrees,
which has been adjusted to yield a new suggested @ of 208 degrees. While the original curve failed as a
candidate orbit to meet minimum altitude requirements (20 km in the transition orbit), the new translated
curve succeeds by minimizing eccentricity (and consequently altitude excursions) over the 55-day duration.
This geometric method is approximate in that it ignores small changes to the shape of the evolution curve as
a result of different starting values of ©, nevertheless, it has been shown to produce fairly accurate results.
As such, the geometric method is a useful tool to obtain quick convergence on the required initial conditions
of © when designing extended mission orbits.

Note the @ vs. e pattern in the geometric figures. This pattern is repeated at approximately the
same order of magnitude with the pattern collapsing on itself in the @ term for the quasi-frozen orbit (ref 3).
The initial conditions and the selection of the epoch determine the starting location on the pattern in the
figure.

Epoch Dependency

While the figures presented thus far depend on the initial argument of periapsis and eccentricity,
the selection of the epoch for these conditions is also important. The selection of a different epoch results
in the start somewhere else on the pattern, but does not change the shape of the pattern evolution. This is
shown in Figure 3. The two epochs differ by 14 days, half of the pattern cycle time. While the initial
conditions are the same, the shape did not change. The change in epoch moved the starting point of the
pattern to the middle for this case. In Figure 3, note that the right half of the pattern labeled A is the left
half of the pattern labeled B even though they have the same initial orbital conditions.
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Figure 2: Post December 19 Maneuver Evolution Figure 3: Evolution Dependency on Epoch
The Selection of the Extended Mission Mean Altitude

The original goal of the extended mission was to have a mean altitude of 25 km with a tolerance of
15 km. As we began design of this orbit, we incorporated the latest databases on selenographic altitude of
the surface. We quickly realized that the altitude above the estimated surface features for a 25 km mean
altitude could place us at a periapsis selenographic altitude of less than 4 km.

In order to predict the actual altitude over the varying lunar terrain, an accurate topography model
was needed. The final topography model used was combined from two different sources. Low latitude data
was obtained from models developed from the 1994 Clementine mission’s LIDAR data. High latitude data
was obtained from a Clementine stereo imaging Digital Elevation Model (DEM).

The processed DEM model gave maximum altitudes over each one degree by one degree bin with
noise suppression which excluded any elevation spikes over 9.6 km. The data was also interpolated over
regions where no data was available. The processed LIDAR model gave averaged altitudes over each 1x1
degree bin. Maximum altitudes were not available. The combined model gave altitudes over a 1x1 degree
grid of the lunar surface. The actual trajectory spherical altitude was compared to the nearest topography
model altitude to obtain a best estimate of actual altitude.

The combined model used the LIDAR data from + 59 degrees latitude and the stereo data at
greater absolute latitudes. The two models admittedly did not merge into a smoothed database; there are
discontinuities of up to 6 km at the merged latitudes. Figure 4 shows a contour map of the combined
database. The differences in the generation of the models used and the data processing into 1x1 degree bins
prevents a more accurate database. Because of the uncertainties in this final model, it was decided to lower
LP to only a 30 km mean altitude orbit which will place the periselene no lower than 12 km and not near
any of the known high altitude regions.

Two Week versus Four Week Evolution

The decision to maintain an altitude of 30 km vice the 25 km was really a reflection of several factors: the
combined effect of the predicted e and ® evolution, the anticipated selenographic surface altitude, the
selection of targets for maneuver planning, more frequent operations, fuel considerations, and occultation
free periods. At the 25 km altitude, the eccentricity evolution does not allow maneuver free durations of
greater than two weeks, but would allow occultation free periods for the execution of the maneuvers. This
more frequent maneuver schedule would also drive the operations schedule for GSFC maneuver, orbit
determination and planning products. During the primary mission orbit maneuvers occurred every 56 days,
whereas the extended mission maneuvers would need to occur every 14 days. Also the maneuver o target
would alternate every 14 days while the periapsis and apoapsis targets would be the same for either case
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since the goal is to maximize the time between maneuvers. Figures 5 and 6 show an example of
maintaining a 25 km altitude every two weeks.
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Tables 1 and 2 present maneuver information for the two and four week scenarios. The o targets
are contingent upon the evolution sequence. The table shows the maneuver dates during our planning
effort before the extended mission. The major differences in the scenarios are an increase in the AV
magnitude approximately 20%-40% for the four week maneuvers but a decrease in maneuver frequency.
The four week scenario uses the same o and e targets for all maneuvers. Table 2 provides the changes in
the orbital parameters corresponding to a decrease in the sma for the extended mission. The major impacts
of the lower sma are an increase in the lunar eclipse duration, which has an effect on the LP power
conditions. This condition requires an on/off cycling of the transmitter to allow for battery recharge upon
exit from the shadow. Another major impact is the reduction in half of the occultation free period. Since
we are required to perform maneuvers during visibility, the maneuvers must be executed on a particular
date. The result of missing a maneuver by two or three days is impact with the lunar surface.

Table 1. Two and Four Week Maneuver Scenario

Orbit Type sma AV1 AV2 o
(km) (mis) (m/s) (degq.)
Two Week Scenario
12/19/98 Transition 1778 (28 day) 214 6.33 200
1/16/99 EMOCH#1 1763 (14 day) 12  -78 230
1/29/99 EMOC#2 1763 (14 day) -5.1 4.0 145
2/12/99 EMOC#3 1763 (14 day) -3 -39 230
2/25/99 EMOC#4 1763 (14 day) 40 -4.0 145
Four Week Scenario
12/19/98 Transition 1778 (28 day) 214 633 200
1/16/99 EMOCi#1 1768 (28 day) 40 -76 205
2/12/99 EMOC#2 1768 (28 day) 75 55 205
Table 2. Extended Mission Orbital Parameters
Circular Mapping Orbit Max Min Occ. Free Eclipse
Orbit Altitude Period Ecl./Occ. Daylight Period Season
{(min.) {min.) (min.) (hrs.) (dates)
100 km 117.85 46.49 71.36 48-72 12/16/98 Ends
40 km 112.13 48.48 63.65 30-40 12/19/98 to
12/24/98 Ends
25 km 110.71 49.41 61.30 24-36 1/14/99 to
6/25/99 Ends
7/17/99 Start
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Selenographic Location of Periapsis

During the planning of the maneuver from the transition orbit to the extended orbit, it was noted
that an extension of two weeks in the 40 km transition orbit would result in the periapsis selenographic
latitude and longitude being rotated to the Earth side of the lunar surface. This would allow new science
data collection over regions at yet unexplored lower periapsis altitudes. Additionally, once in a 30 km
altitude orbit, the periapsis would not rotate to the Earth side before a maintenance maneuver would be
required. It was decided to delay the maneuver to lower the orbit to the final extended mission by two
weeks. This also deferred all the subsequent maneuvers by two weeks until May when we will change the
periapsis location back to the far side.

EXTENDED MISSION MANEUVER PLANNING

The strategy for maintaining the extended mission polar orbit was developed with the following
goals:

Maintain an altitude band of 30 km +/- 15 km, with a minimum altitude of 10 km
Conduct maneuvers in view of a ground station

Minimize the number of maneuvers

Use axial maneuvers instead of vector ( axial and tangential) burns if possible

o W

The last goal was established for reasons of operational simplicity, since LP vector burns cannot
be performed readily during
shadow periods for lack of a 2 purn
reference sun pulse. The nominal % or
LP spin-axis attitude is within a ‘ol llip:\‘e
few degrees of the ecliptic normal
and therefore almost normal to the
Junar equator. To meet this goal
requires that the argument of
periapsis be close to zero or 180
degrees to allow axial maneuvers
to take place parallel to the
velocity direction at periapsis / AV2 AVA
apoapsis. Furthermore, as LP
maneuvers consist of a two-burn
Hohmann like sequence, the
second goal requires that maneuvers
be conducted when the orbit plane is normal to the Earth/moon line, a condition that occurs every 13.7
days. A one burn strategy was considered for contingencies and for minimizing operations, but it would
result in a considerably less efficient vector burn. Also, a one-burn placed at the poles did not always allow
the ® requirement to be met. Shown in Figure 7 is 2 representation of the locations and the orientation of
the orbit plane for all extended mission maneuvers. The maneuvers are performed first at the apoapsis and
then near the ascending node to both meet requirements and to provide the most efficient locations.

Initial
Orbit

—

Figure 7: Maneuver Placement

EMOC Numerical Targeting Process

For extended mission targeting, a numerical method to propagate and to achieve target goals is
required. While the geometric method is based on a pattern recognition, which minimizes the exclusion
beyond the minimum altitude goal based on the ¢ amplitude, it is not optimized. To support the LP mission
design concepts presented in this paper, GN&CC operational software called Swingby is used (ref 4). This
software provides a highly accurate numerical generation of data, which allows the inclusion of the latest
Junar potential models, third body perturbations, and Solar Lunar and Planetary files. It has targeting
capabilities, which include a Differential Corrector (DC) and two optimizers; a steepest decent method and
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a Quasi-Newton (QN) method. This software also provides for the computations of the maneuvers to
maintain the orbits and the generation of the finite burn based on the spacecraft propulsion and attitude
properties. The numerical method of choice consists of a Runge-Kutta Nystrom or Verner 8/9 variable step
propagator, a differential correction process to target the periapsis and apoapsis altitude and ®, and the use
of the spacecraft attitude, mass properties, and blowdown coefficients in the finite burn modeling.

The maneuver planning process is as follows:

> Update initial state from definitive solution

> Propagate to maneuver condition of occultation free zone

> Propagate to apoapsis or periapsis condition or node crossing condition
> Maneuver using axial thrusters: impulsively and/or finite burn model

> Target using a differential corrector to meeting goals of e & ® and

propagate to ensure next maneuver conditions and correct altitude evolution
> Initial Av guess based on experience, previous maneuver, and impulsive computations

EXTENDED MISSION RESULTS
Transition Orbit

Figure 8 shows the Swingby output from the transition maneuver planning sequence. The plots in the
figure show the polar phase space plot of e vs. w, the spherical periapsis altitude above the mean lunar
geode, the selenographic periapsis altitude based on the merged surface database, and the selenographic
latitude and longitude. The evolution plot of e versus w is centered on zero eccentricity with o increasing
counterclockwise. The maximum eccentricity represents the lunar spherical surface. The latitude and
longitude are oriented so that the center of the plot represents the far side of the moon. The drift of and ©
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proceed to the right on the phase space plot. The right side of the phase space plot shows the extension of
the two week ‘wait’ for the flip of the latitude / longitude to the Earth side. The effect of the two week delay
is also seen in the extended mission altitude plots on the right side where the altitude is significantly lower
due to the eccentricity growth. At the end of January, the first EMOC maneuver took place.

Extended Mission Orbit Control (EMOC)

Figures 9 and 10 show a time history of the LP phase space and the orbit periapsis/apoapsis
altitude through the first two EMOCs. To date, the availability of an accurate lunar potential model has
been a key factor in the successful planning of LP mapping orbit maintenance maneuvers. Using the post
maneuver definitive states, a prediction of the orbit evolution is plotted. In order to limit excursions
beyond the +/- 15 km range, initial values of 155 deg for argument of periapsis and approximately 0.0085
for eccentricity (15 x 45 km orbit) were targeted as maneuver end conditions for subsequent Maneuvers.
This would force the post maneuver orbit to evolve towards the zero eccentricity point and permitted a
longer time between Maneuvers. As seen in the phase space plot, the pattern of the evolution has been
shifted to the right with the eccentricity passing close to Zero. This is a direct result of waiting the extra
two-weeks for the latitude and longitude drift to occur. Other that that effect, the evolution occurs as
predicted. The spherical periapsis altitude in the figures are plotted along with the surface height above the
mean lunar geode. The dates of the maneuvers are ~28 days apart and coincident with periods of full
station coverage near full moon (i.e. face-on orbit geometry). Furthermore, as the phase space plot shows,
the maneuver dates occur when the line of apsides is within 20 degrees of the lunar equator, allowing axial
maneuvers to take place with only minor losses in efficiency. Also note the flip in the line of apsides
occurring with each maneuver. Without maneuvers, the orbit could be expected to impact the moon within
only 2 days with the ® evolving clockwise towards 270 degrees. In Figure 10, the results of the EMOC#2
maneuver are plotted. Note on both altitude plots, the definitive states are plotted as squares to show that
the prediction holds true. The difference in the definitive and predictive altitude is only approximately a
few tens of meters. All maneuvers were planned as Moon centered in a lunar equator , Mean J2000
coordinate system. Also, EMOCs #1 and #2 were performed using only the axial thrusters and the QFLO
method (ref 3).
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Figure 10: EMOC#2 Results
Thruster Performance

The performance of Lunar Prospector has been excellent as of the end of EMOC#2. Table 3
provides both Mission Operations Correction (MOC) and Extended Mission Operations Corrections
(EMOC) post maneuver data. As shown by the estimate performance row, maneuver performance has
always been below a repeatability factor of 2%. All post-maneuver states are represented in terms of
Mean-of-12000 Keplerian elements relative to the lunar equatorial plane. The maneuver AV magnitudes
have been roughly the same for all maneuvers since the change to the eccentricity and sma have also been
similar. The states represent the definitive solution shortly after the maneuver. These states were
generated using approximately 8-24 hours of Doppler and range tracking data. A short duration was used
so that the effects of the potential did not influence the calibration. The calibration was performed by using
the Differential Corrector in Swingby to adjust the thrust scale factor parameter while targeting on the
periapsis and apoapsis radius at an epoch shortly after the second maneuver.

Table 3 Lunar Prospector Maneuver Summary

MOCc# | MOC®R Mocx MOC# | MOCH | MOCH6 | Transifion EMOC# | EMOC#2
Target Mawwrser [[ 12.1 mss 74 s 6.0 mss 6lmfs | 64mi | 72ms 7 2mss 6.3 ms% 6.9 m/s

&Y 2.6mls T3mss 5 7mss 0.0 mJs 6.8 mis 6.5 mis 6.5 mis 11.3mss 74mspe
Thaust. Scale 967 10 944 944 925 967 967 967 967
Factor Asammied
Estimated 100.4% 94 4% 99% 98% 101.1% 98% 99% 100% 99.6%
Performance

Post- AV State 1416592 3/03/98 501098 6/25/98 | 811798 | 10712408 12,1998 | 012950 02:25/99
Epoch (GMT): || 00:00:00 05:00:00 17:00:00 | 23:23:00 | 17:45:00 19:20:00 19:15:00 | 08:35.06 12:53:10

a (kam): 18382 18380 1838.0 1337 4 1836.1 18378 17739 1767 9 17630

“ 0.00046 0.00683 0.0064% 0.00512 | 6.00937 | 0.007¢5 0.00841 0.0085 0,00343

1 (deg): $0.55 89.92 29.38 £5.22 89.39 89.75 89.71 89.60 89.67

Q' (deg): 192.76 192.43 192.52 192,55 19332 193 .33 193,83 193 .53 193.39

@ (@2 224.02 196.26 191.51 195.78 180.71 174.05 200.98 154 99 154 .85

LIA (Ge2): 317.04 181.80 184.0¢ 74 58 31477 203 98 203.98 0.00 0.00

Period (hrs): 1.965 1.964 1.964 1.963 1.961 1.964 1.870 1.853 1.853

R, Jan): 1838 2 1350.5 18499 1846.9 | 182405 1851.2 17939 1783.0 17829
Ceraral Body Mloon Moan Lloon bloon Ioom Mloon doon Ddoor Loon

Notes: The MOC#2 through MOC#5 maneuvers used thruster combination A3/A4 for the first time
The MOC#6 through EMOC#2 maneuvers used thruster combination A1/A2 after the 180 degree
spin axis attitude flip

110



ORBIT DETERMINATION

LP’s primary mission was flown at a 100 km mean altitude for one year. During the nominal
mission, the post-processed definitive ephemeris requirement was 1 km 1-sigma position accuracy in each
of radial, crosstrack, and alongtrack. The lunar potential model was the leading source of orbit estimation
error. A few months into the nominal mission, Dr. Alex Konopliv at JPL using the most recent LP Doppler
measurements, updated the lunar potential model (ref 5). This model, LP75D, was a 75" degree and order
model that was considerably more accurate than any pre-LP models. Definitive orbit ephemerides were
cenerated throughout the nominal mission using a batch weighted least squares algorithm. The solution arcs
were 55 hrs with a 7 hr overlap between consecutive solution arcs. The definitive orbit accuracy was
measured by comparing the ephemerides over this overlap period. This technique is more accurately a
consistency measurement, but without independent tracking of the spacecraft, it is the best available
technique. The definitive solution accuracy during the nominal mission phase is shown in Table 4 (ref 6).
The Root Mean Square (RMS) of the position component differences, measured every 10 min during the
overlap period, is considered the 1-sigma position component accuracy. All mapping orbit solutions were
performed using Doppler measurements only.

TABLE 4: NOMINAL MISSION ORBIT DETERMINATION ACCURACY

r Model Radial RMS Crosstrack Alongtrack Position Ave. Dappler Residual
RMS RMS RMS
LP75D 13m 155 m 189 m 270 m 9.3 mm/sec

The definitive solutions, using LP75D, exceeded the mission requirements by more than a factor
of five. The average fit to the Doppler measurements was 9.3 mm/sec. A graph of a sample solution arc’s
residuals is shown in Figure 11. A magnification of the graph is shown in Figure 12. The residual
signature is clearly not due to noise but exhibits a distinct pattern, most likely due to potential model errors.

Lunar Orbit Solution Residuals
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Figure 11: Nominal Mission Solution Residuals
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Residual Periodic Patterns
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Figure 12: Magnified Nominal Mission Solution Residuals

In order to maintain the nominal lunar mapping orbit, periodic maneuvers were required. These
maneuvers and other mission events were planned out weeks in advance based upon long term predicted
ephemerides generated from the estimated states. Figure 13 shows the 36-day and 6-day propagation
accuracies using the LP75D lunar potential model. The accuracy is determined by propagating from the
definitive state for 36 days and comparing to the new definitive state over a 24 hr period. The 36-day
predictions were accurate to about 22 km in total position and less than 3 km in radial error. These
predictions were updated as mission events and maneuvers approached and the 6-day predictions gave total
position errors of less than 500m, with less than 50 m in the radial direction.
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Figure 13: Nominal Mission LP75D Propagation Accuracy
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Going from the nominal mission phase to the extended mission phase entailed many changes. The
lunar potential model would have to be updated. The prediction accuracies given in Figure 13 are for the
100 km mean orbit and would likely greatly increase at 30 km. The transition 40-km orbit was used to
accumulate enough Doppler data to update the potential model and test its prediction capability. The final
lunar potential model used for the definitive solutions in the extended mission, LP100J, was developed
using all LP data from the nominal 100-km orbit, the transition 40-km orbit, and several weeks worth from
the 30-km orbit.

The batch orbit solutions during the extended mission did not change other than the potential
model. They still consisted of 55-hr batch solution arcs with 7-hr overlaps. The period of the orbit only
changed by about 7 minutes, from 118 minutes to 111 minutes, so the orbit observability did not change
much.

The definitive orbit accuracy during the extended mission is shown in Table 5 along with the orbit
accuracy from the nominal mission. Note that despite the improved potential model, the orbit accuracy is
degraded by a factor of more than four due to the lower altitude. The radial component, the most important
for science processing, is still less than 30 meters.

Table 5: Extended Mission Orbit Determination Accuracy

Component 100-km orbit w/ LP75D 30-km orbit w/ LP100J
Radial RMS 13m 28 m
Crosstrack RMS 155m 673 m
Alongtrack RMS 189 m 976 m
Position RMS 270 m 1249 m

Avg. Doppler Residual 9.3 mm/sec 4.3 cm/sec
Average Inclination NA 0.029 deg
Average SMA NA 106 m

The fit to the Doppler data is also more than a factor of four worse than in the nominal mission
phase as seen in Figure 14. This however, does not appear to be solely due to the lunar potential. An
evaluation of the residual signature shows that the Doppler noise is considerably higher in the extended
mission phase. Figure 15 shows a magnification of the residuals over a shorter 6-hr time frame. This
increased noise from the DSN tracking stations is due to the proximity of the spacecraft to the lunar
surface.

Extended Mission Doppler Residuals
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Residual Signature
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Figure 15: Magnified Extended Mission Solution Residuals

In the extended mission, with the much lower altitudes, it would be important to be able to preaict
the spacecraft ephemeris with considerable accuracy. At the 30 km mean orbit, maneuvers were planned
every 27 days with impact occurring less than a week later. So the entire maneuver schedule for the
extended mission depended on the ephemeris prediction accuracy. In the first months of the extended
mission, the prediction accuracy was measured during unperturbed mission segments. The prediction
accuracies are shown in Figure 16. Even after three weeks of prediction at a 30-km mean orbit, the radial
error is less than one km. The alongtrack error however grows to more than 40 km, which translates into 25
seconds in acquisition time.
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Figure 16: Extended Mission Prediction Accuracy

The GNCC LP Product Center provides the definitive history of the LP mapping orbit, both
nominal and extended mission, in two forms: (1) Cartesian ephemeris in the J2000 selenocentric coordinate
system and (2) Moon latitude and longitude in a selenographic coordinate system. Each is available for
each day of the LP mapping orbit. Figure 17 shows the Definitive Ephemerides page. A calendar of linked
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dates provides intuitive browsing. To the right of the calendar, the user may browse the file prior to or in
lieu of downloading it. The Moon Latitude/Longitude page also uses this format. The GNCC LP Product
Center can be found at Attp.//fdd gsfc.nasa.gov/Ip.
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Dl GOk Yiew Co Reswmerca QsO0ny Disery Wedew fam

B e T : E[>

Definitive Ephements
History

Friday, May 29, 1998,

LLN7SD model updates complete

Figure 17: Definitive Ephemerides Web Page
SUMMARY

The first two months of the extended mission of Lunar Prospector have been a resounding success.
Operational results show that selection of orbital parameters need to be considered in the orbit analysis,
maneuver planning, and orbit determination. The coupling of the maneuver epoch along with the target
orbit eccentricity and argument of periapsis is very important, especially for the low altitudes of the
extended mission. The evolution of the eccentricity cannot be eliminated due to the lunar potential, which
has been shown to result in oscillations of approximately 0.01. Orbit determination accuracy is very
dependent upon the quality and the degree and order of the potential model, with LP O.D. results near 1 km
position accuracy. Prediction quality is dependent upon the quality of the definitive and the use of
numerical integrators with small step size (e.g <2 minutes). It is therefore recommended to use these
findings to place other lunar orbiting spacecraft into quasi-frozen orbits. This will maximize the time
between maintenance maneuvers and allows for predictable selenographic altitudes. This practice has been
followed for the extended LP mission orbit with very successful results.
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Janus Trajectory Design

Gregory C. Marr
Flight Dynamics Analysis Branch, Code 572, NASA GSFC

ABSTRACT

The proposed Janus Discovery Class mission will pass over opposite illuminated hemispheres of the planet
Mercury on two successive flybys and will pass over a crater near Mercury’s South geographic pole on the
third and final flyby. Three probes will be released by the main spacecraft prior to the first Mercury flyby
to pass over Mercury’s geographic poles and over the anti-Sunward side. The science team wanted to
complete the first Mercury flyby within approximately 110 days of launch and the second Mercury flyby
within approximately 365 days of launch. A direct trajectory was chosen which met the basic constraints
of the science team while meeting the Discovery launch vehicle constraints. The objective of this paper is
to serve as an overview of the Janus trajectory design. The proposal submitted in June 1998 provides a
comprehensive overview of the Janus mission.

INTRODUCTION

The Goddard Space Flight Center’s (GSFC’s) Planetary Magnetospheres Branch proposed a Discovery
class mission to Mercury, Janus. The main spacecraft will make three hyperbolic flybys of Mercury.
During the first two main spacecraft flybys periapsis will be at approximately 100 km altitude at a low
Mercury latitude close to the sub-Solar point. The sub-Solar and sub-periapsis points for the first two main
spacecraft flybys will be separated by approximately 180 degrees in Mercury longitude, and the second
flyby will occur roughly one year after launch. Different options were explored. A direct trajectory to
Mercury followed by a maneuver after first Mercury flyby to increase the Heliocentric orbit period to
approximately 264 days, 3 times Mercury’s orbital period and 4.5 times Mercury's rotational period, met
the science team's objectives within the mass constraints of the available launch vehicles. This direct
trajectory was pursued as the baseline trajectory at the recommendation of the science team. The science
team preferred the lower elapsed time between launch and first flyby and the less complex operational
scenario offered by this option. Prior to the first Mercury flyby two probes or Remote Experiment
Packages (REPs) were to be released from the main spacecraft to pass over the North and South geographic
poles with periapsis altitudes of approximately 100 km. Later a third REP which would pass anti-Sunward
of Mercury at an altitude of approximately 9756 km during the first flyby was added, and a third Mercury
flyby by the main spacecraft over a large crater near Mercury's South pole was added (Crater X per
reference 2). The main spacecraft will be maneuvered prior to the first Mercury flyby and each REP would
be released sequentially with a small fixed delta v by a spring device to decrease the complexity and mass
of the REPs.

SCIENCE OBJECTIVES

Per the proposal, Janus was proposed as a fast, low cost, low risk four platform mission to Mercury. The
REPs along with the main spacecraft would provide the first multipoint measurements in a planetary
magnetosphere. The main spacecraft would provide 1 x 1 km image resolution of the entire planetary
surface. The main spacecraft instrument package consists of nine different instruments, and the REP
instrument packages consist of three different instruments. The main spacecraft instrument packages are a
visible/infrared imager (VIRSI), ultraviolet spectrometer (Alice), X-ray spectrometer (XRS), neutron
spectrometer (PHINC), magnetometer (MAG), low energy plasma analyzer (PEPE), energetic particle
detector (IPS), search coil (SCX), and electric field instrument (EFI). The REP instrument packages are
PEPE, MAG, and SCX.

Mariner 10 was launched November 3, 1973. After a Venus swingby Mariner 10 made three flybys of
Mercury on March 29, 1974, at an altitude of about 704 km, on September 21, 1974, at an altitude of about
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47,000 km, and on March 16, 1975 at an altitude of about 327 km. The Mariner-10 flybys were separated
by approximately 176 days, roughly 2 times Mercury’s orbital period. Mercury makes roughly three
complete rotations every 176 days. Therefore, the sub-Solar point was at roughly the same Mercury
longitude for each Mariner-10 flyby, and the same hemisphere of Mercury was illuminated during each
Mariner-10 flyby. Janus has a Heliocentric period of approximately 264 days, roughly 3 times Mercury’s
orbital period. Mercury makes approximately 4.5 rotations every 264 days. The sub-Solar point will have
changed by approximately 180 degrees Mercury longitude between Janus flybys allowing opposite
illuminated hemispheres of Mercury to be imaged. Janus periapsis geometry was chosen to meet the
science objectives while taking advantage of the Heliocentric period increase after the Mercury swingby to
decrease the spacecraft delta v requirement and meet the spacecraft mass constraints.

JANUS BASELINE TRAJECTORY DESIGN

The main spacecraft is 3 axis stabilized. The REPs are spin-stabilized. The estimated total dry mass of the
main spacecraft and the 3 REPs is 291.7 kg; the REP mass is 18.6 kg each. The launch vehicle is a Delta II
7925H. The main spacecraft has four 5.0 pound force dual mode thrusters which will nominally use
hydrazine and nitrogen tetroxide for orbit maneuvers. In addition eight 0.2 pound force monopropellant
thrusters using hydrazine are used for attitude control maneuvers.

C3 is twice the combined kinetic and potential energy per unit mass required of the launch vehicle. DLA is
Declination of the Launch or departure Asymptote. Delta v is the velocity change. The minimum C3
opportunities for 2000-2003 period with first Mercury flyby roughly 115 days after launch are listed in
Table 1. Table 1 includes the spacecraft delta v requirement for two Mercury flybys (because the third
Mercury flyby was not added until later in the analysis) and includes a 120 m/sec allocation for launch
vehicle error correction, maneuvers for REP release, spacecraft propulsion system error correction, and
attitude control. If the additional 44.3 m/sec delta v required for the third flyby for the 2002 case is added,
the total delta v increases to 1427.1 m/sec.

By 2004, the C3 requirement increases to 52.9 km?sec’. Launch opportunities occur roughly every 3
Mercury-Earth synodic periods, with Mercury close to aphelion. The nominal launch opportunity for the
Janus proposal submitted in June 1998 was determined to be the 2002 launch opportunity.

The main spacecraft will be maneuvered to place the REPs on the proper trajectory, and the REPs will be
released with a small fixed delta v by a spring device at flyby 1 minus 40, 30, and 20 days. After the
release of the third REP, the main spacecraft will be maneuvered to its nominal trajectory. This timeline
includes an ELV error correction maneuver 10 days after launch but does not include correction of errors in
the spacecraft propulsion system. Typically, these error correction maneuvers required a delta v only
slightly greater than the error itself. More extensive error correction maneuver analysis was done by GSFC
personnel and by JPL personnel as part of the orbit determination and propagation error analysis for which
JPL was lead. The hyperbolic excess velocity of the main spacecraft was approximately 12.7 km/sec for
flyby 1 and 13.9 km/sec for flybys 2 and 3 resulting in an eccentricity of approximately 20 for flyby 1 and
23 for flybys 2 and 3. For flybys 1 and 2 the sub-periapsis point was within 10 degrees Mercury longitude
of the sub-Solar point and was within 20 degrees of the Mercury equator. The trajectories chosen met the
objectives of the science team and accounted for the trajectory errors predicted by JPL's orbit determination
and orbit propagation error analysis. The North Pole REP passes over the North Pole at an altitude of 382
km with periapsis altitude of 100km. The South Pole REP passes over the South Pole at an altitude of 540
km with periapsis altitude of 100km. The main spacecraft passes over Crater X (Reference 2) on the third
flyby at an altitude of 350 km with a periapsis altitude of 100 km. The data above is for the October 17,
2002 launch case, minimum C3.

Figures 1, 2, and 3 show the view from Ecliptic North of the Janus trajectory (and the orbits of Earth and
Mercury) for three different stages of the mission leading to Mercury flybys 1, 2, and 3 respectively.
Figure 4 shows the view from Ecliptic North of the Janus trajectory (and the orbits of Earth and Mercury)
from launch through flyby 3. Figure 5 shows the view from the North pole of Mercury of the 3 main
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spacecraft flybys; because of software limitations, the poles on the planet in the figure are not the Mercury
North and South poles.

The main spacecraft maneuvers and REP releases in a proposed mission timeline for a 2002 minimum C3
launch follow. The epochs are in yyyymmdd/mission elapsed days (ddd) format.

20021017/000: Launch, Minimum C3 (43.0 kmA”2/sec”2)

70021027/010: ELV error correction maneuver (37.6 m/sec), main spacecraft on anti-Sunward trajectory
20021231/075: REP released to pass anti-Sunward

20030101/076: Main spacecraft maneuvered to North Pole trajectory (5.1 m/s delta v)

20030110/085: REP released to pass over North Pole

20030111/086: Main spacecraft maneuvered to South Pole trajectory (3.8 m/s delta v)

20030120/095: REP released to pass over South pole

20030121/096: Main spacecraft maneuvered to nominal trajectory (3.9 m/s delta v)

20030209/115: Main spacecraft flyby 1

20030211/117: Main spacecraft maneuver to increase Heliocentric period to approximately 264 days for
second flyby (1264.9 m/s delta v)

20031030/378: Main spacecraft flyby 2

20031101/380: Main spacecraft maneuver for third encounter (44.3 m/s delta v)

20040720/642: Main spacecraft flyby 3, passage over Crater X near South Pole

There is a 14 day launch window, roughly October 8-26, 2002, which allows for a 30% increase in the
spacecraft dry mass and the corresponding increase in fuel mass. The flyby 1 Mercury periapsis epoch
remained within 12 hours of the minimum C3 case through the launch window. The trajectory variations
were acceptable to the science team.

For the backup direct 2003 launch opportunity with approximately 115 days from launch to first Mercury
flyby, the launch vehicle C3 and spacecraft delta v requirements increased such that a 291.7 kg dry mass
spacecraft could not meet the mission objectives. A direct solution was found which required
approximately 11 months from launch to first Mercury flyby. While this trajectory did not meet the science
team’s desire for a first Mercury flyby roughly 110 days after launch, it was a viable direct trajectory
option.

SUMMARY

The June 1998 submission of the Janus Discovery proposal was the first submission for this mission.
Unfortunately, Janus was not one of the proposals selected for further study. It is anticipated this proposal
could be resubmitted for a future launch date, and some analysis of those potential launch dates has already
been done.
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was lead on the orbit determination error analysis. The trajectories chosen met the objectives of the science
team and accounted for the trajectory errors predicted by JPL's orbit determination and orbit propagation
error analysis.

Per reference 3, Farquhar and Dunham have proposed a phasing loop approach for interplanetary missions

with high launch vehicle energy requirements like this mission. The possible advantages of this approach
could be explored in the event of a future submission of the Janus proposal.
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TABLES AND FIGURES

Table 1. Janus Minimum C3, DLA, and Spacecraft Delta V Requirements

Departure Date C3 (km’/sec?) DLA (deg) Spacecraft Delta V
(yymmdd) {minimum) for 2 Mercury flybys
{m/sec)
20001119 41.1 -14.7 778.5
20011102 40.8 -16.4 1098.8
20021017 43.0 -214 1382.8
20031002 47.3 -25.7 1730.9
\

Figure 1: View from Ecliptic North, Launch to Flyby 1 Showing Earth and Mercury Orbits and Janus
Trajectory
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Figure 2: View from Ecliptic North, Flyby 1 to Flyby 2 Showing Earth and Mercury Orbits and Janus
Trajectory
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Figure 3: View from Ecliptic North, Flyby 2 to Flyby 3 Showing Earth and Mercury Orbits and Janus

Trajectory
}
/

Figure 4: View from Ecliptic North, Launch to Flyby 3 Showing Earth and Mercury Orbits and Janus
Trajectory
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Figure 5: View from Mercury North Geographic Pole of Three Main Spacecraft Mercury Flybys
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J> INVARIANT RELATIVE ORBITS FOR SPACECRAFT FORMATIONS*

Hanspeter Schaub and Kyle T. Alfriend
Tezas ABM University

ABSTRACT

An analytic method is presented to establish J» invariant relative orbits. Working with mean
orbit elements, the secular drift of the longitude of the ascending node and the sum of the argument
of perigee and mean anomaly are set equal between two neighboring orbits. By having both orbits
drift at equal rates on the average, they will not pull apart over time due to the Jy influence. Two
first order conditions are established between the differences in momenta elements (semi-major axis,
eccentricity and inclination angle) that guarantee that the drift rates of two neighboring orbits are
equal on the average. Differences in the longitude of the ascending node, argument of perigee and
initial mean anomaly can be set at will, as long as they are setup in mean element space. For near
polar orbits, enforcing both momenta element constraints may result in impractically large relative
orbits. It this case it is shown that dropping the equal ascending node rate requirement still avoids
considerable relative orbit drift and provides substantial fuel savings.

INTRODUCTION

Earlier studies on the relative motion of spacecraft have used the Clohessy-Wiltshire (CW) equa-
tions':? to describe the relative motion. With these equations periodic motion in the relative motion
reference frame have been identified. These periodic motions include in-plane, out-of-plane. and com-
binations of these two motion types. The LISA program® has three satellites at 1 AU forming an
equilateral triangle in a plane inclined at 60 degrees to the ecliptic. When one includes perturbations,
some of these periodic orbits are no longer achievable without control to overcome the deviations.
A simple example demonstrates this fact. Consider an out-of-plane relative motion caused by a
difference in inclination angles. Due to the Jo perturbation, the inclination difference will cause a
differential nodal precession rate between the two satellites resulting in an oscillatory out-of-plane
motion with increasing amplitude. However, the CW equations do not show this motion; they in-
dicate an out-of-plane oscillatory motion with a constant amplitude. To maintain a relative orbit
designed with the CW equations, periodic orbit corrections are necessary to cancel deviations caused
by the J2 perturbations. Further, a reference motion and the accompanying state transition matrix
might result in an out-of-plane control that changes inclination because the state transition matrix
does not indicate the increasing amplitude caused by the inclination difference. For these reasons
it is necessary for the reference motion to include at least the J, gravitational perturbation effect.
The satellites considered are assumed to be equal in size and shape. Therefore the differential drag

*This research was suppurted by the Airforce Office of Scientific Research under Grant F49620-99-1-0075.
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effect is of lesser importance in this study than the J, effect and is neglected.

The relative orbit geometry between two neighboring satellites is described using the differences
in mean orbit elements. The advantage of this is that the mean orbit elements change very slowly
in the presence of the J, perturbation, making it simple to study the long-term behavior of the
relative orbit. Brouwer’s artificial satellite theory without drag? is used to search for Ja invariant
relative orbits. In particular, we seek to match the average drift rates of the two neighboring orbits
up to first order, resulting in a closed-path relative motion that is practically invariant to the J,
perturbations. The advantage of these relative orbits is that they will need very little control to
cancel the J, effects, and thus require less fuel to maintain.

PROBLEM STATEMENT

At any instant of time, the current inertial position and velocity vectors can be transformed into
corresponding instantaneous orbit elements. In the absence of perturbations, these elements are
constants. Adding the J, perturbation causes the elements to vary according to three types of
motion, namely secular growth, short period growth and long period growth. The long period term
is the period of the apsidal rotation. Over a short time this looks like a secular growth. The short
period growth manifests itself as oscillations of the orbit elements, but doesn’t cause the orbits to
drift apart. The secular growth is the type of growth that needs to be avoided for relative orbits
to be J; invariant. This growth is best described through mean orbit elements. These are orbit
averaged elements which do not show any of the short period oscillations. Mean elements can be
obtained analytically or numerically. Highly accurate mean elements that must include atmospheric
drag, tesseral harmonic and third body effects probably require numerical averaging, In this paper
we use an analytical approach to help determine the accuracy that will be required. By studying
the relative motion through the use of mean orbit elements, we are able to ignore the orbit period
specific oscillations and address the secular drift directly. It is not possible to set the drift of each
orbit to zero. However, instead we choose to set the difference in mean orbit element drifts to zero
to avoid relative secular growth.

Numerous analytic theories for the motion of an artificial satellite have been developed. The one
developed by Shannon Coffey at NRL is the most comprehensive;® it has been developed to third
order with zonals up to at least Jo. In this study we use the theory developed by Brouwer.* We
want to look at the motion defined by the mean elements, thus we will use the averaged elements,
or in Brouwer’s notation, the double-primed elements. This is the Hamiltonian after removal of the
short and long period terms. Since J, = O(J2) for n;2, the only geopotential effect that is included
is J2.

The orbit geometry is described through the Delaunay orbit elements { (mean anomaly), g (argu-
ment of perigee) and A (longitude of the ascending node) with the associated generalized momentas
L, G and H defined as

L=\/pa (1a)
G=+vpa(l-e?) =Ly (1b)

H = Gcosi (1c)

where a is the semi-major axis, e is the eccentricity and ¢ is the inclination angle. The variable n is
another convenient variable measuring the eccentricity and is given by

n=vi-e (2)

Note that G is the angular momentum of the orbit and H is the corresponding polar component.
Unless noted otherwise, any orbit elements used from here on will be assumed to be mean orbit
elements. Since the Delaunay variables are canonical variables, given the Hamiltonian M, their
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rates are found through

= %z\g_ g= %%- h= %4;— (3a)
o 6= =2 (3b)

The mean Hamiltonian M can be written as an asymptotic expansion in € = —-J as
M= Mo +eM + O(e?) (4)

In this study, we will only focus on the first order terms and ignore higher order terms in €. The
first two terms M, and M, are given by

2

-
Mo = — 573 (5)
ap2 3 2
__WR(LY (12
My =~"75 (G> (1 3G2> (6)

with R. being Earth’s radius at the equator. The following algebra is greatly simplified if we work
with dimensionless variables. Therefore distances will be measured in Earth radii R. and time is
normalized by the mean motion of a satellite at one Earth radius (ie. g = 1)- The dimensionless
equivalents of Eqs. (5) and (6) are

M(] = ——2—113 (7)

M, = ‘Z}L'ﬁ (%)3 (1 - 3%2—) (8)

The transformation between osculating and mean elements is shown in the appendix. However,
note that these transformations become singular for a circular master orbit (i.e. the eccentricity e
becomes zero). This causes numerical difficulties in translating mean elements into corresponding
osculating elements for near-circular orbits. Future work will study the use of non-singular canonical
variables to alleviate this transformation problem.

Since both My and M depend solely on the mean momenta L, G and H (i.e. the angle variables
are ignorable), according to Eq. (3b) the mean momenta expressions are constant. Using Eq. (32),
the mean angle rates [, g and h are

- Leet(B) (1-9%) ©
i (5 (-5)
2 (&) (9

Since the mean momenta rates L, G and H are always zero, we will only be concerned with matching
the angle rates between two neighboring orbits in the next section.

CONSTRAINTS FOR J» INVARIANT ORBITS

In order to keep two neighboring orbits from drifting apart, the average secular growth needs to
be equal. Short period oscillations can be ignored here since these are only “temporary’ deviations.
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Also, it is assumed that the long period growth (due to the rotation of the orbit plane) is very slow.
The following development does not guarantee that the long period growth will necessarily be equal.

Since the mean angle quantities /, g and A do not directly contribute to the secular growth caused
by Ja, their values can be chosen at will. However, the mean momenta values L, G and H {(and
therefore implicitly a, € and ¢) must be carefully chosen to match the secular drift rates.

To keep two neighboring orbits from drifting apart over time, one requirement is that the mean
nodal rates h;, defined in Eq. (11), must be equal.

hi=h; Vi (12)

apart over time, the two spacecraft could still remain close if the difference in mean anomaly drift
can compensate for it. Thus, instead of setting the /; and §; equal, we set the sum of the two rates
equal

9,=l,+g,=9] vz;é] (13)

where 6 called the latitude angle. Combining Egs. (9) and (10), the latitude rate 4 is expressed as

.1 3 /L\? H? L H? -
b= tar (5) [(1 ‘35) *Z (1 - 50‘” (9

Let the reference mean orbit elements be denoted with the subscript “0”. The drift rate 6; of a
neighboring orbit can be written as a series expansion about the reference orbit element as
.. 86 98y 86,
0: = 6p + —6L + —26 ——6H .O.T.
°+0L +8G’ G+8H +HOT (15)
where we make use of the fact that 6 = é(L, G, H) only. Let the difference in latitude rates be Jé,
then a first order approximation of Eq. (15) is written as

86 = 6; — 6y = My 6L + MpedG + MoyéH (16)
where My = M, + M, and
;MO,A = a_a (17)

o4 L=L0,G=GQ,H=H0
Similarly, we can expand the nodal rate A to find
Sh = My86L + Mys6G + M, HOH (18)

To enforce equal drift rates 6; and h; between neighboring orbits, we must set 66 and 6h equal to
zero in Egs. (16) and (18), resulting in the following two necessary conditions for relative orbits to
be J, invariant up to first order.

MgL(sL + ‘MQG(SG + Afgy(sH = (19)
My 6L + MpcéG + MyudH =0 (20)

Since Egs. (19) and (20) have three unknown quantities, namely the differences in mean momenta
0L, G and 6H, we are only left with one degree of freedom in selecting the relative momenta. After
choosing either 6L, 6G or 65 , the remaining two momenta differences are determined through the
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two conditions shown above. If we choose to enforce that the various [; and g; are equal, then we
have a nonlinear system of three variables with three constraints, leaving no degree of freedom in
choosing the momenta quantities a, € and i. These conditions are only satisfied for particular orbit
solutions which are of little interest for spacecraft formation flying.

We can work in either the (L, G, H) or (a,e,1) space. The first is easier, the latter is more intuitive.
Since the mean anomaly, argument of perigee and right ascension are ignorable coordinates in the
mean element space, they have no effect on the secular rates between two objects. In the osculating
space they are not ignorable and consequently have an effect on the secular relative motion. The
angles differences 81, g and oh can therefore be chosen at will. Thus, operating in mean element
space has reduced the scope of the problem. This leaves us with a total of four degrees of freedom
to design a J invariant relative orbit.

Using Egs. (9) through (11), the required partial derivatives are found to be:

e 2o 32 () (D) -
om 5 () (o) o
Mg = _aaiH = —62—35 (%)4 (—IC-;I-) (21c)
Mg = —g% = GZ%B- (-g : (—1 + 5%;) (22a)
o Bmee () ()
Mgu 56% - _21_5% (—é)s (—g— (22¢)

)
v =22 (5)' () 0
(

ah 15 (L\° (H

Mie = 56 = ~2L® (5) ’é) (230)
oh 3 (H

Mwn = 55 = €3¢ ('@) (23¢)

Using Egs. (21) and (22), we are able to rewrite Eq. (19) which enforces equal latitude rates.
_ 3 L4 e (ﬂy - (4+3ﬁ> +3 (4+5-Li> (Eﬂ 2 §L
Lo* 4L(8) Go Go Go Go
3 Lo ¢ Ly ( Ly Hg
— = —(3+4= 150142 ) =516
ALy (Go) [ ( %) T \'T°G,) @ ¢

3 (Lo\'(Ho ( Lo\ ; N
—e— | — — — = 24
62L§ (Go> (Go) 3+5G0) SH=0 (24)

Note that only the term JL appears without being multiplied by the small parameter e. Thus dL
must be itself of O(€) and the term involving €5 L can be dropped as a higher order term. The first
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necessary condition is then written as
3 3 (Lo\* Ly Lo\ H?
- pilye (Z0) [ Lo 1+220) Hif,
I +€4Lg (Go> [ (3+4G0)+15( + Go) &7 G

3 (Le\*/H, Ly _ .
"3 (c“o) (c“o) (“550) MH=0 (%)

Using the partial derivatives defined in Eq. (23), we are able to rewrite the second condition for J,
invariant orbits, given in Eq. (20), as

3 (Lo\'[ .H,  Hy L, Lo .1

Since 6L = O(e) the SL term is dropped, resulting in the greatly simplified condition
dH = 5?6G = 5c0s4gdG (27)
0

which enforces equal nodal rates h. Using the §H defined in Eq. (27), we are able to simplify the
condition in Eq. (25) to

e (Lo\°® Go Ho)2
L=-"_([20 =0 o
ey (G) (“%0) (1+5(G0 5G (28)
D

Combined, Egs. (27) and (28) provide the two necessary conditions on the mean momenta differences
between two neighboring orbits to yield a J2 invariant relative orbit.

For more physical insight into these constraints, it is convenient to map them into differences in
the semi-major axis a, eccentricity measure 7 and the inclination angle i. The reason for choosing to
deal with variations in 1 and not the eccentricity measure e itself will become clear shortly. Recalling
that L = \/a (L is a non-dimensional variable), the variations in L and a are related through

5L = iéa = 2‘% (29)
Using G = Ly, the variation of G is rigorously
0G =é6Ln+ Lén (30)
However, since 6L = O(e), we may drop this term to approximate 6G as
6G = Lén (31)
Since H = G cos1, the variation of the polar angular momentum component is
0H = 6G cosi — G sinidi (32)

Substituting Egs. ( 29) and (31) into Eq. (28), this constraint enforcing equal latitude rates between
two orbits is rewritten as

da = 2Dadn (33)

Note that this a is the non-dimensional semi-major axis and must be multiplied by the Earth radius
R, to obtain proper physical units. Substituting Eqs. (31) and (32) into Eq. (27), the constraint
enforcing equal nodal rates % is rewritten as

on = _g tan i (34)
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Combined, Eqgs. (33) and (34) form the two necessary momenta constraints expressed in terms of a
difference in semi-major axis, eccentricity and inclination angle.

To write the constraint in Eq. (34) in terms of the eccentricity e directly, we must take the first
variation of n = V1 — €.

se = — 1o (35)
€

Substituting this into Eq. (34) we find

1—e*)tani ..
( e)anzm

de =
4e

(36)
Clearly numerical difficulties arise with this constraint expression whenever € — 0 and the reference
orbit becomes circular. According to Eq. (36), it would appear that the change in eccentricity
required for a given i would grow infinitely large as e becomes zero. However, Eq. (34) shows that
this is not necessary. Using 7 as the eccentricity measure, wWe find that the change in eccentricity
reaches a finite limit for a circular orbit. The reason for this discrepancy is that it is not the
constraint condition that causes the singularity, but the transformation between variations in e
and n in Eq. (35). To avoid numerical difficulties with circular reference orbits, it is therefore
convenient to describe necessary changes in eccentricity through 67 and then use the nonlinear
mapping e = V1 — n? to compute the adjusted eccentricity.

Note that Eq. (34) shows a fundamental limitation of these mean momenta constraints. For
near-polar orbits, where the inclination angle is close to 90 degrees, the tant term grows very large.
Even a small change in inclination angle &1, typically done to achieve out-of-plane relative motion,
would result in a relatively large change in eccentricity. The result is that the resulting J» invariant
relative orbits grow very large for near-polar orbits, making these orbits of little practical use for
close formation flying applications. However, note that the three mean angle variables can still
be picked at random without causing any orbit drift, even for the polar case. Further, note that
if a change in eccentricity is prescribed for a near-polar orbit, the associated required change in
inclination angle would be very small. Thus enforcing equal drift rate conditions for near-polar orbit
only encounter practical difficulties if a particular change in orbit inclination angle is demanded.
As numerical simulations will show, setting up this worst case problem in mean element space and
then transforming to corresponding inertial position and velocity vectors will typically still exhibit
less secular drift than if the problem is simply setup using osculating elements. Further, while it
won’t be possible to perfectly compensate for the ascending node drift difference due to 4, it 1s still
possible to equalize the latitude rate drifts 6; using Eq. (33)-

NUMERICAL SIMULATIONS

Two numerical studies are presented illustrating J2 invariant relative orbits for both non-polar and
near-polar master orbits. The orbit elements for the master orbit are the same for each simulation
except for the inclination angle ¢ as shown in Table I. The orbit has an altitude of 775 km. Since
each spacecraft is assurned to be of equal type, differential drag effects are ignored here. The purpose
of these simulations is to illustrate how well the first order conditions in Eq. (33) and Eq. (34) render
the resulting relative orbit Jo invariant. Further, the power of setting up relative orbits in terms of
mean orbit elements vs osculating element space is shown.

The relative orbit is constructed in these simulations by choosing particular differences in mean
orbit elements, and then translating the adjusted mean orbit elements of the second satellite into
corresponding osculating orbit elements. The numerical simulation then uses the corresponding
initial position and velocity vector and solves the system using the nonlinear equations of motion
including the J; terms up to fifth order. However, in all cases tested the inclusion of the Jy through
Js terms had an minimal effect on the answer.
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TABLE 1
MASTER SATELLITE ORBIT ELEMENTS

Mean Orbit
Elements Value  Units

a 7153 km
e 0.05

i 48 or 88 deg
h 0.0 deg
g 30.0 deg
l 0.0 deg

transformation shown in the appendix to
actual position and velocity vector)

Non-Polar Master Orbit

The first simulation illustrates how well the matching conditions work for non-polar orbits. Here
the inclination angle is set to 48 degrees. The relative orbit is described by choosing the following
mean orbit element differences. To achieve some out-of-plane motion, a ascending node difference
of 6h = 0.005 degrees is prescribed. The line of perigee and initial mean anomaly differences are
set equal and opposite in sign as §g = 0.01 degrees and 6§/ = -0.01 degrees. Of the three momenta
elements, we chose to prescribe a change in eccentricity de = 0.0001 to exaggerate the in-plane,
relative orbit. Using Egs. (33) and (34), the corresponding changes in a and i must be g = -

0.351765 meters and éi = 0.001035 degrees. Note that both the required da and 47 to compensate
for this de are rather small.

Out-of-Plane {km]
Out-of-Plane {km]

\ Inital Relative Initial Relative
Orbit -0.5 Orbit

Rag. 0
ad;a/[k”]/ 0.5

(2) Initial Relative Orbit Setup in Qs-

(b) Initial Relative Orbit Setup in
culating Elements

Mean Elements

Figure 1 Relative Orbit Drift for a Non-Polar Master Orbit
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Figure 2 Mean and Oscaulating Orbit Element Differences for Osculating Element Space Setup

i

000502 “’z“1"5"1]1235”1?;;%!"‘"!%““ﬁ};%:m‘i}!”ié‘

i
0.00501

[degl

Sh

i il =xw1vp;t“ ]?\E;‘é‘ﬁi;“:lx}i%il«ii
0.00498} ~‘H[,‘;‘l“-'; ISR L

(a) Difference in Ascending Node h (b) Difference in Latitude Angle 8

Figure 3 Mean and Osculating Orbit Element Differences for Mean Element Space Setup

The resulting relative orbits, as seen in the LVLH frame, are shown in Figure 1. The plots always
show the data of 45 orbits, which correspond to roughly 3 days of simulation time. The LVLH
frame is chosen such that the # direction is along the instantaneous master satellite position vector.
The out-of-plane component 5 is found by computing the cross product of £ with the normalized
velocity vector. The along track y direction is then found by taking the cross product of z and &.
The initial relative orbit is always shown as a solid black line, while the path of the remaining 45
orbits is shown as a gray line. Both simulations use the same initial orbit element differences. In
Figure 1(a) the initial orbit element differences, which determine the initial shape of the relative
orbit, are chosen in osculating element space. Substantial relative orbit drift is apparent due to the
perturbative influence of Jo. Figure 1(b) illustrates the drastic improvements that may occur if the
initial orbit geometry is setup in mean element space. Since the matching conditions in Eq. (33) and
(34) are only up to first order, the relative orbit will not necessarily be perfectly J2 invariant. While
some periodic thrusting is still necessary, the frequency of these orbit corrections can be greatly
reduced.

The differences of 6h and 66 between the master and secondary orbits are shown in Figure 2
for the case where the initial setup is performed in the osculating element space. The mean orbit
elements are shown as 2 solid black line, while the osculating elements are shown as a gray line.
The corresponding orbit element differences are shown in Figure 3 for the case where the setup is
performed in mean element space. While for an inclination angle of 48 degrees both orbits experience
2 substantial nodal rate h, the difference in ascending node rates is rather small. Setting up the
relative geometry in mean element space does reduce the relative nodal drift. but not substantially.
A rough calculation of the Av required per year to compensate for this drift shows 0.0725 m/s
required for the osculating element setup, and only 0.01831 m /s required for the mean element setup.

Both are relatively small numbers. At this inclination, the 8 drift is the dominant factor pulling
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Figure 4 Relative Orbit Drift for a Near-Polar Master Orbit

the two orbits apart. Comparing Figures 2(b) and 3(b) the benefit of using mean elements is clear.
Using the osculating setup, the Av required per year is roughly 40.15 m/s. Using the mean orbit
elements to setup the geometry reduces this to (.145 m/s. Using the momenta element matching
condition and working in mean orbit element space, we are a
drift and the corresponding

ble substantially reduce the J2 induced
Av’s required to reset the relative orbits.
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Near-Polar Master Orbit

The second simulation illustrates some issues that arise when trying to generate J, invariant
relative orbits for near-polar master orbits and demanding a specific inclination angle difference
for out-of-plane motion. The inclination angle is set to 83 degrees for this purpose-. The relative
orbit is described by choosing the mean orbit element differences §h = 0.0 degrees (all out-of-plane
motion produced through 8i), 6g = 0.1 degrees and &l = -0.1 degrees. Assume the relative orbit
geometry requires a di of 0.01 degrees to achieve roughly 1 km of out-of-plane motion. However, we
are no longer able to use both matching conditions in Eqs. (33) and (34) since the tani term will
result in unpractically large changes in eccentricity. Therefore we abandon the hope to be able to
compensate for the Sh drifts. For near polar orbits, even though the various h rates are relatively
small, the differences of these rates between neighboring orbits with different inclination angles are
large. However, we are still able to use Eq. (33) to match latitude drift rates. Therefore we are
Jeft with one unused degree of freedom and choose a de of 0.0001 to exaggerate the in-plane relative
orbit.

As the illustrations in Figure 4 show, the J» induced drift can still be reduced by simply setting
up the relative geometry in mean element space. Figure 4(a) illustrates the motion resulting from
setting up the desired orbit element differences in osculating orbit space. The relative orbits pull
apart substantially in three days. Figure 4(b) shows the reduced amount of drift that occurs if
the same orbit element differences are setup In mean element space. Note that Eq. (33) has not
been utilized here to compensate for the latitude difference drift. The relative orbit is thus seen to
drift in the negative along track direction. In Figure 4(c) the semi-major axis a is adjusted using
Eq. (33) to attempt to equalize the latitude rates g. The required da is -0.24157 meters. While there
is still some drift in the relative orbits due to the different h rates, the orbits no longer pull part
due to different latitude rates. Figure 4(d) shows how the relative orbit may become excessively
large if we attempt to cancel all relative orbit drift for near-polar orbits. To achieve a desired 41 of
0.01 degrees, the other two momenta elements differences must be de = 0.020648 degrees and da =
-27.2122 meters. While the resulting near-polar relative orbit has essentially no drift as seen in this
scale, the relative orbit radius grows from a few kilometers to over 100 kilometers. Note that the
desired +£1 km out-of-plane motion isn’t even visible on the scale shown.

The differences in ascending node and latitude angles for the cases where the relative orbit geome-
try is setup in the osculating space and where it is setup in the mean element space with semi-major
axis adjustment are shown in Figures 5 and 6. As predicted, the ascending node drift §h is the same
for both cases since we are no longer trying to compensate for this. Over a year, the Av required to
compensate for this drift is roughly 56.8 m/s. However, where the osculating element setup results
in a substantial latitude drift 60, setting up the orbits in mean element space and compensating
through a corresponding da results in a substantially reduced latitude drift. The Av requirement
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0.003 0.012
T 00025 @ 00l
3 2

0.002 ~ 0.008
3 00015 2 0.006
0.001 0.004
0.0005 0.002

Orbits Orbits

9 18 27 36 45 9 18 27 36 45

(a) Difference in Ascending Node h (b) Difference in Latitude Angle 8

Figure 5 Mean and Osculating Orbit Element Differences for Osculating Element Space Setup for a Near-Polar
Master Orbit
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Figure 6 Mean and Osculating Orbit Element Differences for Mean Element Space Setup for a Near-Polar
Master Orbit

to compensate for the 46 is approximately 112 m/s for the osculating setup. This A drops to 14.1
m/s if the orbit elements are setup in mean element space. The Av requirement per year is then
further reduced to approximately 1.45 m/s if the da adjustment is made to equalize the averaged
latitude rates.

While this method is not able to compensate for the A drift encountered with near-polar orbits,
it is possible to establish an approximate solution that greatly reduces the J, induced relative orbit
drift. Note that prescribing differences to h, g and [ is always possible, even for polar master
orbits. Problems may arise when trying to match a, e and ¢ for a prescribed difference in one of the
quantities.

CONCLUSION

a polar orbit, the corrections required in eccentricity and semi-major axis to compensate for the
J3 effect become too large to be of practical value. Working with near-polar orbits, setting up the
relative orbit geometry in mean elements and canceling the latitude rate difference up to first order
still provides a potentially substantial drift and associated fuel savings. A particular limitation of
the presented method is that the mapping between mean and osculating elements goes singular
for circular orbits. The momenta element differences constraints still hold for circular orbits, but
the mapping from mean to osculating elements has mathematical problems whenever e approaches
zero. Future work will attempt to rectify this by performing the transformation using non-singular,
canonical orbit elements.
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Appendix

TRANSFORMATION BETWEEN OSCULATING AND MEAN ELEMENTS

For completeness, this appendix illustrates the transformation between osculating and mean orbit
elements. This is accomplished through two transformations. The first transformation maps oscu-
lating elements to intermediate or long period elements, while the second transformation maps long
period elements to mean elements. Using Brouwer’s notation, the long period elements are denoted
with a single prime, while the mean elements are denoted with a double prime. The generating
function W;7, which establishes the osculating to long period elements transformation, is given in
terms of non-dimensional Delaunay variables as

. 1 H?
W = pres ((-1+3-G—2—> (f=l+esinf)+
3

- (1 - g;) (sin(2 f +29) +esin(f +29) + %sin(B f+ 29))> (37)

The notation W7 says that this is a first order transformation which removes the short period (sp)
component. In Reference 5, Cofey accomplishes this with two transformations. The generating
function W'llp, which establishes the long period to mean elements transformation, is given by

-1 2 4
p_ _g_i - ff_?_ - H SHN
W= 3203 (l L2> (l SG2 1-16 e +15 o sin 2g (38)

The transformation between long period and osculating elements is achieved through
oW P
L':L—e(L,Wfp)zL—{-e——al—l— (39)

-Sp

Pt et W) =1 - (40)

with analogous transformations for the other momenta and angle orbit elements. The expression
(L,WP) is the Poisson bracket of L and W;P. The inverse for this transformation is achieved
trivially by switching the primed and unprimed letters and reversing the sign of the € term.

‘ WP
L=L +eLl WP =L~- e%— (41)
sp

The long period to osculating elements transformations are then given by

P H,2 a/3 L(3 H,2 a/ 3 , .
L=L - Z—ﬁ {(—1 + 3_5/—2_> (:/_3 - ‘a‘;) +3 (1 - _G_’_2 (;7) cos(2f + 2g") (433.)

12 ’
G=G - 3 (1 - H—) [cos(2f' +2g') + ¢ cos(f' + 24') + %—cos(f}f’ + 29')] (43b)
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H=H (43c)

12 12 ~y2 ’
+30—iﬁ((ﬁil—i+0dmﬂmw (43d)

G/'Z 7‘/2 Ll2
2 2
/ G/ ’ 1 .
+ (%F + j—, + 5) sin{3f' + 2g')>J (43e)
3 2
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o (43f)
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12 /
+ (3 - 5H—) (sin(?f’ +2¢) +€'sin(f" + 29"y + %sin(3f’ + 2g'))J

The transformation between long period to mean elements is achieved in a similar manner. For
the (L',1') elements, they are given by

ip
LI - LII + E(L”, Wl[p) — LI/ _ Ea?jl (44)
rip
U=1"4e(l", Wiy = 1" + eazv”l (45)

is again achieved by simply switching the prime’s and double-prime
€ term. The transformation from mean to long period elements is given by

L'=L" (46a)
-1
. € G//2 H//2 H//4 HNZ
G' = G + W (l - F) <1 - ISF + l5w> (1 - 5% Cos Qg” (46b)
HI = HII (46C)
3 2 4 2\ 1!
) . € 1" H" H" H" ] "
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PERFORMANCE EVALUATION OF THE GPS ONBOARD ORBIT DETERMINATION SOFTWARE
TO ENSURE IMPROVED POSITIONING ACCURACY

Andrew R. Garber, Lin Haas, Mark Pittelkau Ce
Orbital Sciences Corporation o T

ABSTRACT

This paper presents the performance validation of the GPS Onboard Orbit Determination Software (GOODS).
Orbital developed GOODS in response to the need for improving GPS real-time positioning accuracies to better than
20 m lo. The GOODS software includes an Extended Kalman Filter that processes GPS pseudorange and Doppler
measurements. Contained within the filtering algorithms are high fidelity models of aerodynamic drag, Solar/Lunar
gravity, and non-spherical geopotential. GOODS will fly on Orbview-3, Orbview-4, VCL, and RADARSAT-2.

Analysis focuses on the validation of individual force models and state estimation performance. Specific test
cases evaluate a reduced order of the geopotential field, orbit adjust maneuvers, and a 7 day extended duration
processing interval. Results show GOODS meets the success criteria for all of eleven test cases. Position and
velocity errors obtained through Monte Carlo runs are consistently less than 10.0 m and 0.01 m/s 1o, respectively.

INTRODUCTION

The GOODS software was developed to provide high-accuracy real-time positioning capabilities for satellites
using space-capable GPS receivers. Existing commercial space-capable receivers (single frequency-SPS) typically
provide positioning errors on the order of 100 m 95% and velocity errors of 1 m/s 95%. Orbital is currently building
several satellites that require real-time 16 position and velocity errors on the order of 20 m and 0.01 mvs,
respectively.

To achieve these accuracies, GOODS uses an Extended Kalman filter (EKF) with high-fidelity force models.
These force models include the JGM-2 geopotential (30" order), the Harris-Priester atmospheric density model for
drag acceleration, and Solar/Lunar point mass accelerations. A 4% order Runge-Kutta numerical integrator is used to
propagate the state vector between epochs. The filter itself uses a 9-element state vector, that includes position,
velocity, drag coefficient, and receiver clock bias and drift. State process noise for position and velocity are based
on errors of omission for the non-spherical geopotential model, along with other empirical noise factors. The

receiver clock and drag coefficient are modeled as random walk processes.

Eleven test cases were developed to validate the GOODS performance. Table 1 provides an overview of the
test cases, along with the success criteria for each case. The success criteria are based on existing Orbital spacecraft
positioning accuracy requirements. The test cases were designed to isolate specific GOODS capabilities, and were
executed such that each successive test built upon prior successful test results. The start time for each test case is
midnight, 08 September 1998. The duration of each test was 24 hours except for test case 10 that has a 7 day
duration.

Test cases 1-2 validate the GOODS propagation force models. A reference trajectory generated by the
MicroCosm program (ref. 1) was used as the truth trajectory for these tests. Test cases 3-10 validate the GOODS
filter performance. To provide a controlled test environment for evaluating the GOODS filter, a GPS simulator was
developed for generating pseudorange measurements from a reference trajectory. The simulator was designed to
provide control over the individual error components of the pseudorange measurements, including receiver clock
bias (Cyar)- satellite clock bias (Cgps), Selective Availability (SA), jonospheric delay (I), receiver noise (Muser)> and
User Equivalent Ranging Error (UERE). Finally, test case 11 performs a Monte Carlo analysis to evaluate the
statistical performance of GOODS.
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GOODS VALIDATION
Test Case 1 — Propagation Using Partial Force Models

Test case 1 validates the GOODS propagator, the geopotential, and Solar/Lunar force models. Drag is not
modeled in this test case. GOODS force models include the JGM-2 geopotential (30" order), and Solar/Lunar point
mass accelerations. A 4® order Runge-Kutta numerical integrator is used to propagate the GOODS state vector
between epochs. The MicroCosm truth trajectory was generated using a 30® order GEM-T3 geopotential model,
and the JPL planetary ephemeris for Solar/Lunar perturbations. MicroCosm uses a more accurate Cowell
predictor/corrector numerical integrator. The accuracy of the GOODS propagated state vector relative 1o
MicroCosm is evaluated over a 23 hour timespan. Table 4 shows that the test criteria of maximum position errors <

10 m are met.

Figure 1 shows the radial/intrack/crosstrack GOODS position errors relative to the truth trajectory. The small
errors in each component validate the GOODS partial force models, and present their high level of accuracy.

Table 4: Test Case 1 Propagation Errors with Partial Models

Position Errors Velocity Errors

Component Mean (m) | Sigma () Component Mean (m/s) | Sigma (m/'s)
Radial Error -0.03 0.44 Radial Error 0.001 0.009
Intrack Error -0.91 297 Intrack Error 0.000 0.001
Crosstrack Error 0.03 1.00 Crosstrack Error 0.000 0.008

Radial Position Error
T T T T mean: -0.03 ' \
sigma: 0.44

g

3

8

3 |
§ 4]
Y s
i 1 L i L 1 i 1] i
2 4 8 10 12 14 16 18 20 22
Intrack Position Emmor
2«)‘—7 T T 1 T T ] T T meén'. -09‘ | ,i
‘ . 297
_ 100\’ sigma: 2.9 1
= |
~  ol— !
: |
v -1oot J
K 1 i L 1 1 ] ) 1 1 1
200 2 4 8 10 12 14 16 18 20 22
Crosstrack Position Error
1001’_’_7 T T T T T T T T
—_— 50 r
E
5 0
w
504
R ¢ 1 1 L L 1 1 1
100 2 4 6 8 10 12 14 16
Time (hr)

Figure 1: Test Case 1 GOODS Position Errors Relative to the MicroCosm Truth Trajectory
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Test Case 2 - Propagation Using Full Force Models

Test Case 2 validates the GOODS drag model. In computing the drag acceleration, GOODS employs the
Harris-Priester atmospheric density model, whereas MicroCosm uses the higher fidelity 1971 Jacchia-Roberts
atmospheric density model. The Cross-sectional area of the satellite was 42 mk

Initially for both drag coefficients (Co) equal to 2.3, over the 23 hour timespan, the propagation of the initia]
state vector takes approximately 10 hours to diverge to -200 m in intrack position error. This is due to the different
atmospheric drag models. The mean radial and crosstrack errors maintain good stability at about 0.0 m mean error.
To account for the differences between the MicroCosm and GOODS drag models, the C, was set to 2.433 in
GOODS. The value of 2.433 was chosen to minimize the intrack position errors over 23 hours.

Figure 2 shows the radial/intrack/crosstrack GOODS position errors relative to the truth trajectory. Over the
23 hour timespan, the maximum intrack position error is-8m. In setting Cy to 2.433, control of such intrack errors
is obtained, and the precision of the GOODS drag model is validated. During real-time operations, GOODS will
estimate Cj, to compensate for errors in the drag model. From Table § and Figure 2, the test criteria of maximum
position errors < 200 m are met.

Table 5: Test Case 2 Propagation Errors with Full Models

Position Errors Velocity Errors

Component Mean (m) Si (m) | Component Mean (mvs) Sigma (nvs)
Radial Error -0.06 8.58 Radial Error 0.034 0.031
Intrack Error -27.63 28.54 Intrack Error 0.000 0.010
Crosstrack Error 0.02 0.94 Crosstrack Error 0.000 0.008
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Figure 2: Test Case 2 GOODS Position Errors Relative to the MicroCosm Truth Traiectox_'x for Cp=2.433
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Test Case 3 — Solve for Baseline

Test Case 3 validates the fundamental Kalman filter equations and logic. In this case, perfect pseudorange
measurements are simulated using zero measurement errors in the SA, receiver noise, receiver clock bias, and
receiver clock drift. The initial state vector consists of perfect a priori position, velocity, clock bias, clock drift, and
drag coefficient obtained from Case 2 (Co = 2.433). From Table 6, the following test criteria are met: 1) 10
maximum position errors < 10 m, and 2) 10 maximum velocity errors < 0.01 m/s. In addition, the filter converges
well within 2 orbits.

Table 6: Baseline State Errors
Position Errors Velocity Errors
Component Mean (m) | Sigma (m) Component Mean (nv's) Sigma (nv/s)
Radial Error -0.51 0.98 Radial Error -0.001 0.011
Intrack Emror 0.84 1.45 Intrack Error 0.000 0.001
Crosstrack Error -0.03 0.44 Crosstrack Error 0.000 0.009

Test Case 4 — Solve for Position and Velocity

Test Case 4 validates the ability of the Kalman filter to solve for position and velocity using non-perfect
pseudorange measurements and non-perfect a priort position and velocity. Pseudorange measurement errors include
SA, and receiver noise. Receiver clock errors are not modeled. The initial state vector is perturbed by 36 position
and velocity errors of a typical GPS space receiver, and uses perfect a priori clock and Cop. Initial 3¢ position errors
are 450 m, 300 m, and 300 m in radial, intrack, and crosstrack components, respectively. Initial 3¢ velocity errors
are 5.196 m/s in each of the three components. The initial position and velocity variances were modified to account
for the initial position and velocity errors. From Table 7, the following test criteria are met: 1) 10 maximum
position errors < 70 m, and 2) 16 maximum velocity errors < 0.01 mi/s. In addition, the filter converges well within
2 orbits.

Table 7: State Errors Usi Initial 3c Position and Velocity Offsets

Position Errors Velocity Exrors

Component Mean (m) | Sigma (m) Component Mean (m/s) Sigma (m/s)
Radial Error -0.48 2.42 Radial Error 0.000 0.014
Intrack Error -0.07 6.20 Intrack Ermror 0.000 0.003
Crosstrack Error -0.77 6.21 Crosstrack Error 0.000 0.010

Test Case 5 — Solve for Clock Bias and Drift

Test Case 5 validates the ability of the Kalman filter to solve for receiver clock parameters using non-perfect
pseudorange measurements and non-perfect a priori clock bias and clock drift. Pseudorange measurement €rrors
include 23.0 m (1o) for SA, 3.60 m (16) for receiver noise, 150000 m for initial receiver clock bias, and —0.30 m/s
for initial receiver clock drift. The initial state vector uses perfect a priori position, velocity, and Co. Initial state
clock errors are 450000 m and —0.9 nvs for the clock bias and the clock drift, respectively. Initial receiver clock
bias offset and clock drift variances were modified to account for initial state clock errors. From Table 8, the
following test criteria are met: 1) 16 maximum position errors < 20 m, and 2) 16 maximum velocity errors < 0.01

m/s. In addition, the filter converges well within 2 orbits.

Table 8: State Errors Using Initial Clock Bias and Drift Rate Offsets

Position Errors Velocity Errors

Component Mean (m) | Sigma (m) Component Mean (mVs) Sigma (nvs)
Radial Error -0.22 2.04 Radial Error 0.001 0.012
Intrack Error -0.44 5.46 Intrack Error 0.000 0.002
Crosstrack Error 0.30 6.58 Crosstrack Error 0.000 0.009
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Test Case 6 - Solve for Drag

Test Case 6 validates the ability of the Kalman filter to solve for drag using non-perfect pseudorange
measurements and a non-perfect g priori coefficient of drag. Pseudorange measurement errors include SA and
receiver noise. Receiver clock errors are not modeled. The initial state vector consists of a non-perfect a priori drag
coefficient offset 50% from the Co of 2.433, with perfect a priori position, velocity, and clock. The Initia]

following test criteria are met: 1) 16 maximum position errors < 20 m, and 2) 10 maximum velocity errors < (.01
m/s. In addition, the coefficient of drag converges to 2.433 in less than 10 orbits.

Table 9: State Errors Usin Initial C, Offset 50 % from True Value

Position Errors Velocity Errors

Component Mean (m) | Si (m) | Component Mean (m/s) Si (mv/s)
Radial Error -1.09 2.75 Radial Error -0.002 0.016
Intrack Error 1.30 7.46 Intrack Ermor 0.001 0.003
Crosstrack Error 0.13 7.45 Crosstrack Error 0.000 0.009

Test Case 7 ~ Third-Body Gravity Perturbations of the Sun and Moon

stringent memory and processing specifications that may require this GOODS capability to be disabled. To observe
third body effects on the Propagation accuracy, GOODS was run first with Solar/Lunar perturbations on and then
with them off. Measurement processing was inhibited in both cases. This was done for both a 450 km and an 1000

km orbit. This test uses a perfect a pri

At the altitude of 450 km, the coefficient of drag was set to 2.433 for Propagating the initial state vector. Qver
23 hours, residuals between Solar/Lunar “On” state errors vs. Solar/Lunar “Off” state errors show good agreement
in radial and crosstrack components. Intrack position errors grow to 120 m in the 23 hour period, as shown in
Figure 3.

Effects of Sun/Moon Perturbations at 450 Km Altitude
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Figure 3: Third Body Propagation Errors at Altitude of 450 Km
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At an altitude of 1000 km, the coefficient of drag was set to C, = 0.0078 for propagating the initial state vector.
In doing so, effects of Solar/Lunar perturbations are isolated at the higher altitude. Over 23 hours, residuals between
state vectors show good agreement in radial and crosstrack components, as before. Intrack position errors grow to
140 m in a 23 hour timespan. The purpose of testing at an altitude of 1000 km is due to the prevalent effects of
Solar/Lunar accelerations at higher altitudes. In addition, 1000 km is the maximum altitude for Orbital satellites that
shall employ GOODS.

Effiects of Sun/Moon Perturbations at 1000 Km Altitude
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Figure 4: Third Body Propagation Errors at Altitude of 1000 Km

For both tests, the following success criteria are met: 1) 16 radial position error < 100 m, 2) 10 intrack position
error < 500 m, and 3) 16 crosstrack error < 100 m.

Since the test criteria are met, all remaining test cases exclude Solar/Lunar perturbations from processing.
Test Case 8 — Geopotential Model

Test Case 8 determines the minimum order of the geopotential model such that GOODS meets both the 23
hour 10 propagation requirement of < 500 m intrack error, and the 1o estimation position and velocity accuracy
requirements of 20 m, and 0.01 m/s, respectively. As in the previous case, stringent memory and processing
requirements of several Orbital spacecraft may require GOODS to truncate the geopotential model. This was
achieved in two steps. The first step involved propagating the perfect a priori state vector with decreasing field
order, until the success criteria was not met. The 17® order geopotential field model permitted propagated intrack
errors < 500 m over the 23 hour timespan.

The second step validated the selection of 17 order field model by evaluating the estimation errors using non-
perfect pseudorange observations and perfect a priori state. Pseudorange measurement errors include SA and
receiver noise. The initial state vector consists of perfect a priori position, velocity, clock bias, clock drift, and drag
coefficient. The state process noise was modified to account for the lower-order geopotential, based upon
propagation results using the 17% order field model. Solar/Lunar perturbations are excluded from this processing.
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For the 23 hour timespan, Table 10 shows the estimation errors for processing with the 17® order geopotential
field model. The following test criteria are met: 1) 16 maximum position errors < 20 m, and 2) 16 maximum
velocity errors < 0.01 mvs.

Table 10: State Errors Solving with 17 Order Geopotential Field

Position Errors Velocity Errors

Component Mean (m) | Sigma (m) | Component Mean (nv¥s) | Sigma (mvs)
Radial Error 0.11 4.59 Radial Error 0.001 0.016
intrack Error -0.68 7.69 Intrack Error 0.000 0.005
Crosstrack Emror -0.64 6.17 Crosstrack Error 0.001 0.010

For missions that employ the GOODS software, the selected geopotential field order depends on the

positioning accuracy requirement. In order to meet the 20 m (16) GOODS test requirement, the order must be > 17.
As aresult, test cases 9 and 10 shall use the 17® order geopotential.

Test Case 9 — Solve for State

Test Case 9 validates the ability of the Kalman filter to solve for the entire state vector using non-perfect
pseudorange measurements and non-perfect a priori state vector. Pseudorange measurement errors include SA,
receiver noise, receiver clock bias, and receiver clock drift. The initial state vector is perturbed by 30 position and
velocity errors, clock bias, and clock drift errors of a typical GPS space receiver. The a priori Cp, is offset by 50%
from the true value of 2.433. Initial variances for position, velocity, coefficient of drag, and receiver clock were
modified accordingly, along with radial, intrack, and crosstrack state process noise based upon the 17% order
geopotential. Solar/Lunar perturbations are excluded from processing in the filtering algorithms.

From Table 11, for the 23 hour timespan, the following test criteria are met: 1) 1o maximum position errors <
20 m, and 2) 16 maximum velocity errors < 0.01 m/s. In addition, the Co converges to the true value of 2.433 in
under 10 orbits.

Table 11: State Errors Solving for Entire State Vector

Position Exrors Velocity Errors

Component Mean (m) | Sigma (m) | Component Mean (mvs) | Si (my's)
Radial Error -1.44 5.29 Radial Error -0.002 0.016
Intrack Error 1.04 8.21 Intrack Error 0.001 0.005
Crosstrack Error 0.37 6.67 Crosstrack Error 0.000 0.009

Test Case 10 — Extended Duration with Maneuvers

Test Case 10 validates GOODS over an extended duration of 1 week, and includes 3 orbit adjust maneuvers.
The maneuvers occur at 40 hour intervals, each with a 120 second duration. In order, an intrack maneuver occurs at
980910.1600 UTC, a crosstrack maneuver occurs at 980912.0800 UTC, and a radial maneuver occurs at
980914.0000 UTC. The AV for the intrack, crosstrack and radial maneuvers are 1.562 m/s, 3.104 m/s, and 2.492
m/s, respectively. The intrack and crosstrack maneuvers were modeled after TDRSS maneuvers, but scaled down
for the VCL spacecraft weight. The radial maneuver is based upon the orbit adjust maneuvers of UARS and GRO.

Non-perfect pseudorange measurement errors include SA, receiver noise, receiver clock bias, and receiver

clock drift. The initial state vector is perturbed by 36 position and velocity errors, clock bias, and clock drift €errors
of a typical GPS space receiver. The a priori Cy is offset by 50% from the true value of 2.433.

GOODS accounts for maneuver effects in the state propagation by instantaneously ‘bumping’ the state process
noise at the beginning of the maneuver. The magnitude of the increase is a function of the total AV of the
maneuvers. Maneuver parameters are input to GOODS via an uplink command dataset. This occurs at the onset of
GOODS execution, as each maneuver is stored in a queue and is executed at the proper start time. Maneuver
parameters include start and stop times, and position and velocity process noise based on the maneuver magnitude
and direction. In addition, the state process noise was modified to account for the lower-order geopotential, based
upon propagation results using the 17® order field model. Other initial variances modified were those for position,
velocity, coefficient of drag, and receiver clock. Solar/Lunar perturbations are excluded from processing in the
filtering algorithms.
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For the 1 week timespan, the following test criteria are met: 1) 16 maximum position errors < 20 m, and 2) 1O
maximum velocity errors < 0.01 m/s. In addition, the Cp converges to its true value of 2.433 after the first two
maneuvers (intrack and crosstrack), but takes longer to reconverge after the radial maneuver, as shown in Figure 7.
This characteristic is a function of maneuver magnitude, position and velocity correlations, filter gain, etc.

From Table 12, residuals between the GOODS filtered state vector and the truth trajectory show good
agreement. The only exceptions occur during times of maneuvers. During the maneuvers, the maneuver process
noise increases the filter covariance that allows the estimated state to be more sensitive to the incoming
measurements. This results in larger state errors during the maneuver. As more measurements are processed, the
filter covariance decreases and the state errors reconverge to the pre-maneuver levels. Figures 5 and 6 present
filtered state errors for position and velocity over the entire 1 week timespan. The * 3G values contained within
Figures 5 and 6 are based on the filter variances. Figure 7 shows filtered state vector parameter Cp, along with the
true Cp = 2.433, depicted as a solid line.

Table 12: State Errors Solving for Maneuvers and Extended Duration

Position Errors Velocity Errors

Component Mean (m) | Sigma (m) Component Mean (m/s) Si (v/'s)
Radial Error -0.60 10.81 Radial Emror -0.002 0.031
Intrack Error 0.89 9.89 Intrack Error 0.000 0.017
Crosstrack Emror -0.25 8.17 Crosstrack Emror 0.000 0.020
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Figure 5: Filtered Position Errors for Extended Duration Plus Maneuvers
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Test Case 11 - Monte Carlo Analysis

Test case 11 evaluates the statistical behavior of GOODS by using a Monte Carlo technique. The GPS
simulator is configured to generate 30 cycles of measurement data, each cycle containing statistically independent
values for the receiver clock, SA, receiver noise, and UERE errors applied to the pseudorange measurement. Each
GOODS cycle starts with a different initial state vector, whose value is determined by perturbing the true initial state
with random values determined from the error distribution of a GPS receiver state vector. The mean and standard
deviation of the position and velocity errors are then computed across the 30 cycles, and represent the performance
of the GOODS software under a multitude of different conditions for the given orbit. For this analysis, GOODS
uses the 30® order geopotential.

The modeled equation for pseudorange is:
P, =R + I + Cuer -Cops + SA + TNuser + UERE

where:

P, . pseudorange measurement

R - geometric slant range

I - Ionospheric delay

Clser - User Receiver clock bias

Caps - GPS satellite clock bias (including relativistic effects)

SA - Selective Availability

TNuser - User Receiver noise

UERE - User Equivalent Range Error to simulate errors in the broadcast ephemeris and clock parameters

Ionospheric delay is modeled as a function of elevation and Total Electron Content (TEC). The user clock and
UERE are both modeled as random walk processes. The user clock model is specified by the Allen variances fora
Temperature Compensated Crystal Oscillator (TCXO). SA is modeled as a 2™ order Gauss-Markov process (ref. 2).
In GOODS, I, SA, Nuer, and UERE are unmodeled error sources in the Kalman filtering algorithms. They are
accounted for in the measurement weights. SA is a time correlated random process, whereas Tusr is a pure random
process. R is the magnitude of the difference between the position of the GPS satellite and that of the user. UERE
compensates for the random time correlated errors in the broadcast ephemeris and GPS satellite clock errors. Cgps
is the random walk defined by the TCXO Allen variances.

The Monte Carlo analysis was performed over 24 hours with no maneuvers. Table 13 shows the average mean
and standard deviation statistics computed over the 30 Monte Carlo cycles between 2 and 24 hours (filter
converged). The —2.58 m bias in the mean intrack error is caused by the non-zero mean ionospheric errors. Both
the position and velocity meet the 16 performance requirements of 20 m, and 0.01 mvs, respectively.

Figure 8 presents the mean and * 30 position errors for the 30 Monte Carlo cycles. These mean errors remain
at about 0.0 m for most of the 24 hour timespan, with the exception at the onset of filtering fromt=0tot=25
hours. Figure 9 presents an overlay of the position errors for each of the 30 cycles. The jaggedness for each
position component is a result of varying initial state vectors with random values determined from the error
distribution of a GPS receiver derived state vector.

Figure 10 presents the mean and * 30 velocity errors for the 30 Monte Carlo cycles. These mean errors
remain at about 0.0 m/s for most of the 24 hour timespan, with the exception at the onset of filtering fromt=0tot=
2.0 hours. Figure 11 presents an overlay of the velocity errors for each of the 30 cycles. The jaggedness for each
velocity component is a result of varying initial state vectors with random values determined from the error
distribution of a GPS receiver derived state vector.

Table 13: Monte Carlo Errors for 980909.0000Z — 980910.0000Z With No Maneuvers

Position Errors Velocity Errors

Component | Mean (m) | Sigma (m) Component Mean (nvs) Sigma (m/s)
Radial 0.30 1.45 Radial 0.003 0.005
Intrack -2.58 5.05 Intrack 0.000 0.001
Crosstrack 0.03 2.71 Crosstrack 0.000 0.003
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30 Cycle Monte Carlo Run: Mean Velocity Error +/- 3 Sigma for 9/9/98 - 9/10/98
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Figure 10: Velocity Errors for Simulated Data with No Maneuvers
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Figure 11: Overlay of Velocity Errors for Each of 30 Monte Carlo Cycles
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CONCLUSIONS

An incremental approach was presented for validating the GOODS force models and estimation capabilities.
The results presented show that GOODS meets the performance requirements for Orbital spacecraft, which are 16
position and velocity errors less than 20 m and 0.01 m/s, respectively. Test cases included worst-case initial state
errors (based on 3G errors from a GPS receiver), orbit adjust maneuvers, and a 7 day extended duration run.

A Monte Carlo analysis was performed to quantify the statistical behavior of GOODS for a given orbit and
environment. These results show that the 10 position and velocity errors (| mean | * 1) are less than 10 m and 0.01
m/s, respectively. These results provide confidence that GOODS will meet Orbital’s spacecraft real-time
positioning requirement. It is recommended however that GOODS positioning specification remain at 20 m 1o to
account for real-world perturbations that may not have been simulated (e.g., ionospheric scintillation). Further
ground evaluation will include closed-loop simulation using the Global Simulation Systems STR-4760 GPS
simulator. Final validation of GOODS will occur on orbit in support of Orbview-3, to launch later this year. In this
configuration, GOODS shall process live GPS measurements obtained via the onboard GPS receiver.
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PERFORMANCE SIMULATION OF AUTONOMOUS SOLAR NAVIGATION

Yanping Guo and Thomas E. Strikwerda
The Johns Hopkins University Applied Physics Laboratory

ABSTRACT

The performance of a new type of autonomous solar navigation system is analyzed in this paper. Such
efficient autonomous navigation systems will reduce operation costs and alleviate the Deep Space Network
workload in future space missions. The method is demonstrated by applying it to the STEREO mission. Orbit
determination is simulated through the use of the mission-defined trajectory profile and solar angular data
acquired by the on-board science instruments currently being considered. The study shows that the orbit
solution derived by this new type of solar navigation system can satisfy the mission’s navigation requirements;
the position uncertainties obtained in the simulations are well below the mission allowable values, and are
comparable to the results obtained with the conventional Doppler tracking system in some cases.

INTRODUCTION

Over the past decade, NASA’s space missions have been evolved toward the direction of faster, better,
and cheaper. More small missions have been launched recently, which are in the $50-100 million budget range
with focused objectives and fast turn-around results, in contrast to the past when there were fewer but large
missions with much higher budgets and long mission time. As the number of on-going missions increases, the
Deep Space Network (DSN) will be overwhelmed with the DSN usage requests. A significant amount of time is
needed for the Doppler tracking of the spacecraft to determine the orbit by the navigation team for each
mission. It is therefore very desirable to develop more efficient navigation systems that have less or no
dependence on the DSN; they can also minimize the requirements of ground operations.

A self-contained autonomous navigation system suggested in Ref. 1 uses the Sun as the navigation
reference body and determines the spacecraft orbit based on observations made of the Sun using on-board
instruments. The orbit is determined by tracking the directional change of the Sun by the spacecraft as it orbits
the Sun or by measuring the optical Doppler shifts due to the relative motion of the spacecraft to the Sun. It has
been demonstrated in Ref. 1 that the spacecraft orbit can be completely determined by either the directional
data or the Doppler data alone, though the two types of data together may do a better job. This solar navigation
system is best suited for missions with heliocentric orbits and for deep space missions during the long
interplanetary cruise phase.

The performance of this new type of solar navigation system is analyzed in this paper by applying it to
a specific space mission - the Solar TErrestrial RElations Observatory (STEREO) mission. Orbit determination
is simulated using this mission as the study case. Two features of the STEREO mission are especially appealing
for this new solar navigation system: the readily available on-board science instrument - the Solar Coronal
Imaging Package (SCIP) - which can provide the Sun direction data for navigation; and the spacecraft’s
heliocentric orbit with no orbit maneuvers for the entire mission. In this study, it is assumed that the directional
data only will be acquired for the spacecraft orbit determination.

MISSION PROFILE

STEREO is one of the Solar-Terrestrial Probe missions, a joint effort of NASA Goddard Space Flight
Center and the Johns Hopkins University Applied Physics Laboratory. As described in the Report of the NASA
Science Definition Team for the STEREO Mission (ref. 2), this mission will provide a new perspective view of
the solar coronal mass ejection process and the heliospheric environment with 3D images, taken simultaneously

* This work is carried out under NASA-APL Prime Contract NAS5-97271, Task Order 14.
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from two identical spacecraft traveling in near Earth orbits. While orbiting the Sun at a distance of 1 AU, one
spacecraft will lead Earth and the other one will lag behind. After launched, the two spacecraft will gradually
drift away from the Earth, forming favorable geometry for solar observations. The leading spacecraft will dwell
near 20° (the Spacecraft-Sun-Earth angle) between 200 and 400 days into the mission, and near 45° between
600 and 800 days. The lagging spacecraft will dwell near 30° and 60°, respectively. No trajectory maneuvers
are required, and the separation drifting is achieved by inserting the spacecraft into a heliocentric orbit each
with a slightly different eccentricity from the Earth’s orbit.

Each spacecraft will point its instrument boresight towards the Sun and orient the gimbaled high gain
antenna towards the Earth within #0.1 degrees for data communication. Fach spacecraft carries a group of
observation instruments including a Solar Coronal Imaging Package, which also provides the fine solar
reference to the attitude control system of the spacecraft for maintaining the Sun pointing for solar observation.
The mission requires that the instrument line of sight viewing the Sun should be maintained with a +30 arc-
seconds of 36 accuracy. The spacecraft orbit position should be known better than 7500 km for science data
analysis and ground station antenna pointing.

ACQUISITION OF THE SUN DIRECTION DATA

A coronagraph is a specialized solar observation instrument developed to view the solar corona by
producing an artificial solar eclipse. It is essentially a telescope with an occulting disk in the focal plane to
eclipse the image of the solar disk, and with other features to reduce stray sunlight so that the corona
surrounding the occulting disk can be observed. Since the first flight on a sounding rocket in 1963 (ref. 3), the
coronagraph has been frequently carried on spacecraft for various solar observation missions. Their spatial
resolution, time resolution, mission duration, and observation range have been greatly improved over time.

Besides the primary function of producing the solar corona image, a coronagraph is also a fine sun
sensor. High accuracy sun pointing data can be derived from the coronagraph measurements. It basically
projects the sun disk image onto two pairs of detectors which measure the signal of the solar limb at four
orthogonal positions, as shown in Fig. 1 (ref. 4, 5). Differentiating the signals of each pair of the detectors in
line gives the center of the sun, providing the sun pointing direction relative to the spacecraft body fixed
coordinate system. With the help of an on-board star tracker, the sun pointing direction may easily be referred
to an inertial coordinate system. This sun pointing information is then fed to the guidance and control system of
the spacecraft for maintaining an appropriate instrument pointing direction for desired science observations.
Solar pointing direction with arc second accuracy can be easily achieved with current coronagraphs (ref. 5).

Detector

Detector Detector

Detector

Figure 1 Measurement of Sun Direction with Four Orthogonal Detectors at the Limb of the Solar Image
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For the STEREO mission, the on-board coronagraph instrument (SCIP) will provide the solar pointing
knowledge accurate to 0.1 arc-sec (30) to the spacecraft’s Attitude Control System (ref. 2), and the star tracker
oriented anti-parallel to the instrument line of sight direction will have an accuracy of about 3 arc-sec (ref. 6).
The simulations of navigation performance in this study assume the use of the on-board SCIP as the Sun sensor
for acquiring the Sun direction tracking data and generate the simulated observation data with mission-defined
instrument accuracy.

ORBIT DETERMINATION SIMULATION
Trajectory Generation

As described in the mission profile section, the STEREO mission will fly two spacecraft
simultaneously. Since the trajectories of the two spacecraft are similar and navigation requirements are
identical, only one spacecraft’s orbit determination needs to be simulated. The resuits should be equally
applicable to both. The leading spacecraft’s performance is analyzed. The simulated trajectory for STEREO, in
the ecliptic plane, together with the Earth’s orbit, is shown in Fig. 2. The angular separation, i.e., the
Spacecraft-Sun-Earth angle, and the range of the spacecraft from the Earth up to 800 days into the mission are
shown in Fig. 3, and Fig. 4, respectively.
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Figure 2 Spacecraft Trajectory in the Ecliptic Plane
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Observation Data Generation

The Sun direction tracking data are generated based on the simulated spacecraft trajectory and the
capability of the on-board instruments defined for the mission. Gaussian distributed white-noise errors are
introduced to the assumed measurement data. A good star tracker can yield 10 prad single frame accuracy (we
have ignored for this study other errors such as uncorrected optical distortion and thermal effects). The
direction data errors are dominated by the star tracker errors since the coronagraph errors are much smaller
(0.16 urad). A 10-urad (16) error is used in generating the simulated observation Sun direction data.
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Orbit Determination Program

An Orbit Determination (OD) program has been developed for estimating and predicting the
spacecraft’s position and velocity from the observed Sun direction data, which uses the least squares method
minimizing the residuals between the observed quantities and the predicted ones. As demonstrated in Ref. 1
through theoretical analysis, a general spacecraft orbit specified by six classical orbit elements is completely
determinable with the Sun direction data alone. For the simulation here, the orbit determination is performed
through numerical computation by fitting the orbit parameters with observation data. The fitted parameters are
the spacecraft’s initial state vector, position and velocity. Observation data fed to the OD program are a series
of time tagged Sun direction unit vectors.

Fitting Results and Features
Influence of Observation Coverage

Each observation data point contains a unit Sun direction vector at the observation time. It determines
two of the six components of the spacecraft’s state vector. Three such different data points will suffice to
precisely determine the spacecraft’s state if the observation data are error free. However, measurement errors
are inevitable due to either the instruments or processing the measurements. Therefore, more data points are
usually used in practical orbit determination to reduce the effect of measurement errors. In addition, some orbit
parameters are insensitive to sun direction changes. Therefore, longer data arcs are necessary to accurately
estimate them all.

As expected, the data coverage window does influence the estimation result substantially. Simulations
show short data arc yields large uncertainty in the radial direction (the observation direction of the solar
angular data) compared to the other two components. The angular data instantly fix the position vector in the
plane perpendicular to the observation direction, but constrain the position vector along the observation
direction through the accumulated angular changes over time. If we define the position error vector in the HLC
coordinate system, a moving system with the unit vector H along the position vector direction, the unit vector C
normal to the orbit plane, i.e., along the orbit angular momentum direction, and the unit vector L perpendicular
to both H and C forming a right-handed system, the uncertainty ellipsoid of the position vector can be
schematically represented as in Fig. 5.

The influence of the data arc length to orbit estimation is illustrated with three examples of the
simulation, as shown in Fig. 6, where the residuals between the estimated spacecraft position and the true
position are plotted in the HLC coordinate system. The estimated position is obtained by integrating the orbit
using the estimated initial state vector derived from the OD program fed with the observation data. The three
examples include: case A which is fitted with 10 days of data, case B with 20 days, and case C with 40 days. A
data point is taken at every hour in the defined time span for all of the three cases. It shows that the along (L)
and across (C) track components of the residuals remain small in all cases, but the radial (H) component errors
reduced substantially when the data span is increased from 10 days to 40 days. The radial residuals reduced
from 80 times larger (16000 km) to a level comparable to the other two components (200 km). It should be
pointed out that with an orbit period of about 345 days, the data span of 10 day, 20 day, or 40 day, only covers a
small fraction of the orbit circle, i.e., 1/34, 1/17 and 1/9, respectively. The simulation results are very
encouraging in that an uncertainty of about 200 km in all three components are achieved with an observation
window of only 1/9 of the orbit period, considering the measurement error of 10 prad at the distance of 1 AU
(1.5x10® km). This position uncertainty is much smaller than the mission allowable value of 7500 km.
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H: radial
L: along track
C: across track

Figure 5 Position Error Ellipsoid in the HLC Coordinate System

Influence of Data Sampling Frequency

Effects of the data sampling frequency on orbit estimation are also examined by comparing the
solutions in several cases in which observation data are provided with different data acquisition frequencies but
having the same time span in length. Position residuals derived from observation data sampled in every 2
hours, every 4 hours, and every 12 hours in a time span of 40 days are plotted in Fig. 7. The trend is similar to
the case of varying the time span length, in that the position errors are dominated by the H component and it
increases significantly as the data density is reduced, while the other two components of the errors remain
relatively steady, bounded by a few hundreds of kilometers. Although increased substantially in the H
component, the position errors are still within the allowable value even if the data are sampled in a 40-day span
with only two data points per day.

Convergence

Another important feature revealed in the simulations is that the fitting process performed by the OD
program always converges very nicely. The final solution of the fitted parameters depends only on the
observation data provided, its coverage range, sampling frequency, and error models, but is independent of the
initially guessed values. The initial values guessed for the initial state vector input to the OD program appear to
have no effects on the final solution. Good convergence means onboard autonomous orbit determination is
probably robust. As an example, two different initial state vectors, as listed in Table 1, are input to the OD
program fed with the same observation data file, and the exactly same solution of the estimated initial state
vector is obtained.

160



RESIDUALS (km)

5.0x10°

) e o I e e o e e L e e e ;:';"_'.;:;
~5.0x10° -
~1.ox10*E -

E Case A: E
—1.5x10% 10 Day Span 3
-2.0x10*L - s - 1 .

0 2 4 6 8 10

time (day)
200 ; ' '
ok T e s
—~ P~ =
€ - 4
~ =200 ]
- C 4
9 C 4
<

3 C i
2 400 ]
b*:-' L 4
L Case B: -

—600 20 Day Span
—-800 " . R 1 R ’ ]

0 5 10 15 20

time (day)

200F ' T ‘
o Case C: E
C 40 Day Span . —
100 & c - =
X - — .-
~ e y-.{...t ---------------------------------- 3
a oF = E
< O — =
> E — =
= . . — 3
N c 3
- E
-100F- H \
—-200 L ) ; 3

0 10 20 30 40

time (day)

Figure 6 Effects of Data Span Length on Orbit Estimation: Residuals yielded
in a 10-day span (top), 20-day span (center), and 40-day span (bottom)

161



E

1000 F 7 4 ' i

800 k- 1 Data Point Every 2 hours _E
~ 600 =
€ - ///
= o 3
wn 400 H -]
—J - —
g L -
o 200 .
a a I o S
v 0_;—7 T T T T T e e -

~200 -
—-400[C I N 1 L s ]
0 10 20 30 40
time (day)
3000 F ' - ' 3
F 1 Data Point Every 4 hours g
2000 —
£ - 3
X - 3
% E 3
Z 1000k =
D — —
=) = 3
n E =
& = 3
oE ______;:______C______:
~-1000E., . - . A . 3
0 10 20 30 40
time (day)
4000 = L T T 3
3000 1 Data Point Every 12 hours _;
€ 2000F 3
2 3 3
7} = 3
I 1000F -3
2 e =
2 E 3
wn E— —
w 0 e T T T T T T T =
o 4 g g
-1000 - 3
—2000E , . L e S
0 10 20 30 40
time (day)

Figure 7 Effect of Data Sampling Frequency on Position Estimation: Residuals yielded in a 40-day span with
data sampled in every 2 hours (top), every 4 hours (center), and every 12 hours (bottom)

162



200 E T T T T 3
100 - =
G 3 3
< 3 3
5 OF E
< = =
2 E =
=3 = 3
& —100E" E
o E E
z 3 3
= —200F =
o0 = E
o E
a E
-300 =
—400 E 2 N 1 1 ! 3
0 20 40 60 80 100
time (doy)
T E
< 3
@ 3
= =
< F - — — — T E
a = <y
% -100 g‘ - 3
@ E E
z E . 3
o -200k& 3
= = E
%) E 3
o £ 3
o -300F —
3 S
~400E : ; ; . E
0 20 40 60 80 100
time (day)
0‘002 T T T T
g ! " ’ :
€ 0.000 == VI c ]
s H i
ps | 0
< o -
3 :
& -0.002 -
wl - o
4 i _
b L _
8 -0.004 —
| - —
w
> L ]
~0.006 . . . . ]
0 20 40 60 80 100
time (day)

Figure 8 Estimation Results with 90-day Fitting Data: position residuals in HLC coordinates (top), position

residuals in Cartesian coordinates (center), and velocity residuals in HLC coordinates (bottom)

163



Table 1. Different Initial Guesses Converge to the Same Estimated Initial State Vector
Errors X (km) Y (km) Z (km) Vikm/s) V, (km/s) V, (km/s)

Case 1  In Guessed State 5000.0 -5000.0 2000.0 0 0 0

In Estimated State  -97.9378  -27.5948  -98.3366  0.001028  0.001268 -0.000404

Case2  In Guessed State 50000.0 -50000.0 80000.0 -0.001 0.001 0.001

In Estimated State  -97.9378  -27.5948  -98.3366 0.001028  0.001268 -0.000404

Residuals of orbit fitting with a longer data time span is shown in Fig. 8, where data arc of 90 days,
about a quarter of the orbit circle, is used with data sampled at every hour. The results confirm the solution
obtained with a shorter data span of 40 days, as shown in Fig. 6. This example further demonstrates the
convergence stability of the new solar navigation system and its orbit determination program.

Orbit Solution

As indicated in both Fig. 6, orbit fitting results from a 40-day data span, and Fig. 8, results of a 90-day
data span, an orbit solution better than about +200 km is achievable with the solar navigation system using
currently planned on-board instruments. The results are comparable to those baselined for STEREO with the

conventional two-way Doppler tracking system: estimated uncertainties of +200 km along track and 100 km
across track are cited in the mission report (ref. 2).

Further work will be carried out in the study including the effect of the solar pressure on spacecraft
orbit, a more realistic noise model for the SCIP and star tracker, and the implementation of an on-board
Kalman filter. The extension of this study will attempt to demonstrate that the inclusion of those additional
error sources will still meet the 7500 km requirement.

CONCLUSION

The performance of a new type of self-contained autonomous solar navigation system, which
determines the orbit based on observations of the Sun with on-board instruments, is studied by applying the
system to the STEREO mission. Orbit determination studies are carried out using mission-defined trajectory
and observation data simulated from the on-board science instrument and attitude subsystem. Simulation results
reveal that orbit solutions comparable to the one derived by using the current ground-based two-way Doppler
tracking system can be obtained with the new solar navigation system. With the obit determination program
developed here, the orbit parameters fitting process can converge nicely, and its final solution appears to be
independent of the initially guessed values for the initial state vector. It is found that an orbit solution better
than about +200 km is achievable with this new system using the on-board instruments. This is much better
than the required uncertainty of +7500 km. This analysis demonstrates that this new solar navigation system

can satisfy the STEREO mission requirements, and is promising for achieving autonomous navigation in future
Space missions.
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A Self-Tuning Kalman Filter for Autonomous Navigation
Using the Global Positioning System (GPS)’

S. H. Truong
National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland, USA 20771

Abstract

Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce
accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly
reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft
navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component
fully integrated with the flight navigation system can perform the seif-tuning capability for the Kalman filter and help the
navigation system recover from estimation errors in real time.

1.0 Introduction

Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total
mission cost. The Goddard Space Flight Center (GSFC) Flight Dynamics Analysis Branch (FDAB) has spent several
years developing high-accuracy autonomous navigation systems for spacecraft using NASA’s space and ground
communications systems and enhanced these systems to support spacecraft using the Global Positioning System (GPS).

GSFC FDAB has developed navigation algorithms to meet a real-time accuracy goal of better than 20 meters (1o) in
position and 0.03 meter per second (1o) in velocity using GPS Standard Positioning System (SPS) with selective
availability (SA) corruption at typical levels. These algorithms, which are based on mature onboard navigation systems
developed for spacecraft using NASA’s space and ground communications systems, consist of the following core
components:

e An extended Kalman filter (EKF) augmented with physically representative models for the gravity,
atmospheric drag, solar radiation pressure, and time bias and drift state process noise to provide a realistic state
€ITor covariance

» A high-fidelity state dynamics model to reduce sensitivity to measurement errors and provide high-accuracy
velocity estimates, permitting accurate state prediction during signal outages or degraded coverage

e Initialization and enhanced fault detection capabilities using instantaneous geometric GPS solutions

Detailed mathematical specifications for FDAB autonomous navigation systems using GPS are defined in Reference 1.
Algorithms selected to meet the GPS navigation performance goals are summarized in Reference 2.

The FDAB has implemented these algorithms in a prototype GPS navigation software called the GPS Enhanced Orbit
Determination Experiment (GEODE), which executes within the resource constraints of currently available flight
processors (e.g., <400 kilobytes memory and <0.5 million instructions per second). Processing of raw pseudorange
measurements from existing GPS receivers on the EF/EUVE and TOPEX/POSEIDON (T/P) spacecraft indicates that
these navigation algorithms can provide accuracy of 10 meters (15) in total position and 0.01 meter per second (15) in
total velocity with SA at typical levels. Without SA active, experiments performed in a realistically simulated flight
environment produced converged solutions with errors of 15 meters maximum and 4 meters rms in total position.
Improvements to the baseline algorithms to achieve real-time onboard accuracy of better than 2 meters (o) are
discussed in Reference 2.

* This work is supported by the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFO),
Greenbelt, Maryland, under a Research and Study Fellowship Program.

167



from these problems, and compact enough to run on flight software. The current method of using EKF for state
estimation requires manual tuning by support personnel. The re-tuning process is more complicated when dealing with
geosynchronous or high-eccentricity orbits.

This paper discusses an approach to produce a high accuracy onboard navigation system that can recover from
estimation errors in real time. The self-tuning capability is achieved by a neuro-fuzzy component augmented to the
Kalman filter.

2.0 Extended Kalman Filter for Spacecraft Navigation

The orbit state estimation algorithm for FDAB autonomous navigation systems consists of an EKF that uses physically
connected noise covariance models to account for force model and measurement errors.  Autonomous navigation
systems developed by the European Space Agency (ESA) or the Japanese Space Agency (NASDA) also use EKF for
state estimation (References 3 and 4). The state vector consists of at least the user spacecraft position and velocity
vectors. For GEODE, additional components include the atmospheric drag coefficient correction, solar radiation
pressure coefficient correction, the GPS receiver time bias correction, and the time bias drift correction. The state

The state covariance matrix, [P], represents the filter uncertainty in the estimated state vector. It is initialized or
reinitialized using ground uplinked parameters.

Bierman’s factorization methods. These [U] and [D] matrices are time propagated and measurement updated in the
Kalman filter process, instead of [P] and [Q].

Parameters for [Q] and [R] are uplinked to the onboard navigation system to start or re-start the estimation process, or
whenever the filter re-tuning is needed. For GEODE, there are ten parameters for [Q] and one parameter for [R].
Generally, parameters related to small unmodeled noises or to small errors in modeled accelerations that are not very

on the updated state and covariance. The Filter Convergence Test is the major test. If the filter has not converged and
if the RSS position sigma, RSS velocity sigma, and semimajor axis sigma are all below their respective ground
commandable convergence tolerances, then filter re-tuning is required. The current tuning process is performed by
ground support analysts. Updated tuning parameters are uplinked to the onboard system to reset the filter.

3.0 Neuro-Fuzzy Systems

Neural networks and their learning capabilities have enjoyed a strong popularity with the development of the
perceptrons in the 1960s and especially, after more powerful leaming algorithms were discovered in 1985. A neural
network is considered as a computing system that is made up of a number of simple, highly interconnected processing
elements. Neural networks are used in many applications, from robot control to financial forecasting. A drawback of
neural networks is that for some applications they do not always work as expected, and for the user a neural network
simply is a black box. The user cannot learn from it.

classification, decision analysis, expert systems, and computer vision. Fuzzy systems are not, however, created by a
learning algorithm. A major problem is that its parameters must be tuned manually, usually in an error-prone and time-
consuming process.
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Neuro-fuzzy systems are built from the idea of applying neural network algorithms to automatically determine and tune
parameters of fuzzy systems. That combination could avoid drawbacks of both neural networks and fuzzy systems, and
constitutes an interpretable model that is capable of learning and using problem-specific prior knowledge.

Various neuro-fuzzy models have been developed. The Adaptive Neuro Fuzzy Inference System (ANFIS) model and
its generalization for multiple inputs/outputs systems are used to prototype the self-tuning component for autonomous
navigation using Kalman filter. This preliminary choice is mainly based on the model efficiency, software availability,
and the fuzzyness of filter outputs. The final product is expected to be more complex.

Several neuro-fuzzy system models are described with details in References 5 and 6. Fig. | shows the architecture of a
two-input ANFIS with nine rules.

Output

Input

598

g

)

Figure 1. Architecture of a Two-Input ANFIS with Nine Rules

4.0 Neuro-Fuzzy System for a Self-Tuning EKF

The self-tuning method discussed in this paper is to optimize navigation autonomy for GEODE, which uses GPS as a
main tracking system. This method, however, can be applied without significant modifications to any other system that

uses a Kalman filter for autonomous navigation.

Fig. 2 illustrates a high-level architecture of the integrated system.
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Outputs from the filter include the state error covariance matrix [P), measurement residual [M], and appropriate
information relating to the filter and satellite status. [P] and [M] are gathered in time series, limited by a reasonable
preset time window. When the filter is not convergent and covariances hit preset thresholds, which are less generous
than those set by the Filter Convergence Test, the re-tuning process is needed. Functional representations for the [P],
[M] time series are then determined (e.g., using a least-squares polynomial fitting), and the preprocessor forms an input
vector to the neuro-fuzzy system. The neuro-fuzzy system analyzes these inputs to produce tuning data to be used to
adjust [Q] and [R].

Input patterns and target parameters are specifically modeled to train the neuro-fuzzy system for a given user
spacecraft. The training process is performed prior to the operational use of the system.

GPS Ephem,

GPS Measurements

Data

Estimated States

—>

[Q],
[R]

[P]. [M], Filter Status
Tuning Parameters

Figure 2. High-Leve/ Architecture of the Self- Tuning Kalman Filter for
Autonomous Navigation Using GPS

5.0  Prototype for Phase | Development

The real scenario of the self-tuning navigation system can be much more complex than as described above and the final
product would be capable to respond dynamically to filter problems. The main issue, however, is simply to find a
mapping between the behavior of the filter output (e.g., state error covariance) and the tuning parameters. The primary
phase of the development of the self-tuning Kalman Filter for autonomous navigation is therefore to build a simple
prototype that can prove the existence of such a mapping. The target navigation system for this prototype is GEODE
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processing GPS data for low earth orbits (LEO). For LEO user spacecraft, there are three parameters that are related to
errors in the acceleration models for solar gravity and lunar gravity; or to unmodeled accelerations from polar motion,
tidal effects, random venting, etc. These parameters need to be updated via the tuning process. Preliminary
examination of output data from different cases shows that patterns of velocity variances (or standard deviations) are
adequate in the determination of tuning parameters. The tuning subsystem prototype for Phase I is simply a three
inputs/three outputs neuro-fuzzy system augmented by a preprocessor that gathers filter outputs (i.e. state error
covariance) in time series, determines if the filter re-tuning is needed, and uses least-squares process to fit them to
second degree polynomials. The preprocessor also builds a vector that functionally represents the behavior of the
covariance and that is input to the neuro-fuzzy system. Parameters are tuned using the hybrid option that is a mixture of
least-squares and backpropagation techniques. An asymmetric and closed sigmoidal function is used as a membership
function.

Fig. 3 shows a high-level diagram of the Phase I prototype.

State Error Covariance
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» Gather data in
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. Decide if re-tuning
is needed

. Build input vectar
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Figure 3. High-Level Diagram of the Phase | Prototype
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6.0 TestResults

Data from the GEODE processing of real GPS pseudorange measurement with SA on, obtained from an experimental
receiver flown on the TOPEX/POSEIDON (T/P) spacecraft on November 17, 1993, were used to test the Phase I
prototype.

Fig. 4 shows the convergence of the in-track velocity standard deviation from the T/P testing. Similar curves are seen

in other components as well as in the corresponding position standard deviations. This behavior reflects a filter status
where correct tuning parameters are provided.

To train the neuro-fuzzy system, standard deviation patterns and corresponding target tuning parameters for fifty cases
are used. Fig. 5 shows 3 patterns that correspond to different errors in one of three tuning parameters, Q.
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2 3 ; 5 6
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Figure 4. In-track Velocity Standard Deviation from the T/P Testing

Results from preliminary testing of this Phase I prototype show that errors in tuning parameters are identified and the
System can be well recovered from these errors, The average testing error is 0.0024 m/s for parameters ranging from
0.02 to 0.8 m¥s’. Fig. 6 shows the average difference between the in-track velocity standard deviations obtained from
the correct Qi and from that determined by the prototype.

These test results are encouraging for this preliminary work. It is stil] premature, however, to have a good conclusion
about the quality and practicality of this method of self-tuning when applying to the complex operational scenario of a
real autonomous navigation system.
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6.0 Future Directions

Phase II of the development of the self-tuning Kalman Filter for autonomous navigation is to refine the self-tuning
method to accommodate to a much more complex operational scenario and to accordingly complete the system

prototype.

Phase III will involve the extension of the self-tuning filter to cover geosynchronous spacecraft and high- eccentricity
orbits. For these cases, more parameters need to be updated in the re-tuning process and the tuning frequency is
projected to be much higher.
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AN ALTERNATIVE LUNAR EPHEMERIS MODEL FOR
ON-BOARD FLIGHT SOFTWARE USE

David G. Simpson
Flight Software Branch
NASA Goddard Space Flight Center, Greenbelt, Maryland 20771

ABSTRACT

In calculating the position vector of the Moon in on-board flight softwarc,
one often begins by using a series expansion to calculate the ecliptic latitude
and longitude of the Moon, referred to the mean ecliptic and equinox of date.
One then performs a reduction for precession, followed by a rotation of the
position vector from the ccliptic plane to the equator, and a transformation
from spherical to Cartesian coordinates before finally arriving at the desired
result: equatorial J2000 Cartesian components of the lunar position vector. An
alternative method is developed here in which the equatorial J2000 Cartesian
components of the lunar position vector arc calculated directly by a series ex-
pansion, saving valuable on-board computer resources.

INTRODUCTION

The calculation of the orbit of the Moon is onc of the oldest problems in
cclestial mechanics. Its solution has had great historical significance as a test
of Newton’s theory of gravity, with much of the carly work on the problem
having been done by Newton himself in his discussion of the two- and three-
body problems in Book [ of the Principia. In past centuries, accurate predictions
of the position of the Moon have also been of great practical interest as a
navigational aid for seafaring vessels, prompting the English government and
scientific socictics to offer rewards for accurate lunar prediction tables.! The
resulting body of work developed during the cighteenth and nincteenth centurics
forms the basis of the lunar theory still in use today.

Modern lunar theory was first developed by G.W. Hill2~% in 1878, and later
expanded and improved by EW. Brown® in 1896. The problem of lunar motion
addressed by Hill and Brown is a surprisingly difficult one; while the underlying
physical laws arc very simple, the motion itsclf is quite complex.” ™! The basic
motion of the Moon around Earth is affected by many strong perturbations such
as thosc duc to the Sun, the other plancts, and Earth’s equatorial bulge. These
perturbations result in an advancement of the line of apsides of the lunar orbit,
a regression of the line of nodes, and other periodic perturbations supcrimposed
on these motions. For high accuracy, it is necessary to compute hundreds of
periodic variations in the motion. although computing only the most important
fow terms results in a level of acenracy that is adequate for flight software usc.

Therc have been two major reasons for calculating the position of the Moon
in spacecraft on-board computer flight softwarc. First, onc often wishes to write
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flight software to prevent the spacecraft from pointing sensitive instruments at
the Moon, which can have an apparent magnitude as bright as —12 at full
Moon.!? Second, onc may require the flight software to calculate stellar aberra-
tion corrections.!® For high accuracy, this requires calculating the velocity vector
of Earth with respect to the Earth-Moon barycenter, which in turn requires a
calculation of the lunar velocity vector. If the flight software can calculate a
lunar position vector, then this velocity vector may be found by differentiating
the lunar position vector with respect to time.

REVIEW OF CURRENT MODELS

A number of approaches for calculating a lunar position vector are currently
used by spacecraft flight software. In the flight software for the Hubble Space
Telescope’s DF-224 flight computer, for example, one finds the position of the
Moon using a simple two-body model. The standard two-body calculations!4
are modificd somewhat to allow for the motion of the nodes and apsides of the
lunar orbit. A new sct of orbital clements is uplinked from the ground every
few days to keep the error in the model to within acceptable limits, on the order
of 1°. While this model is not highly accurate, it has the virtue of being very
fast --a necessity for the 1970s-vintage flight computer.

An approach commonly used with more modern flight computers is based on
the low-precision formulae given in the Astronomical Almanac.'®'® This model
is based on carlier work done by the Almanac Offices of the United States and
United Kingdom!” and by Eckert, Walker, and Eckert,® all of which are based
on Brown’s lunar theory.5 In this model, one begins by using scries cxpansions
to calculate the ecliptic longitude A, ccliptic latitnde 8, and horizontal parallax
7 of the Moou, rcferred to the mean ccliptic and cquinox of date:

A = 218%32 + 481 2G7°883 ¢
+6%29 sin(477 19885 £ + 134%)
—1227 sin(-413 33538  + 259%2)
+0%6 sin(890 534°23 t + 235%7)
+0%21 sin (954 397°70 £ + 269%9)
—0719 sin(35 999°05 ¢ + 357%5)
~0°11 sin(966 404°05 t + 186%) . (1)

A= +5°13sin(483202°03 ¢ + 93°)
+0°28 sin(960 40087 + + 228°2)
—0°28 sin(6 003°18  + 318°3)
—0°17 sin(~407 332520 + + 217%) . (2)
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= 09508
+0°0518 cos(477 198%85 # + 134%9)
+0°0095 cos(—413 33538 t + 259°2)
+0°0078 cos(890 534°23 * + 235°7)
+0°0028 cos(954 397°70 ¢ + 269%9) . (3)

The horizontal parallax 7 gives the Earth-Moon distance r:

T = i > (4)

sin

where Rg = 6378.140 km is the cquatorial radius of Earth (IAU 1976 value).'®

Having found the lunar ecliptic mean-of-date coordinates, onc must then
perform a reduction for precession to epoch J2000 (2000 January 01 12:00:00
Barycentric Dynamical Time) to find the ccliptic J2000 coordinates (Ao, Ho).
To sufficient precision, this may be found using the formulac®

By = B—bsin(A+c), (5)
Xo = A—a+beos(A+c)tanfl, (6)

where the precession constants a, b, and ¢ arc given by

o = 19396971 # + 0°000 3086 2, (7)
b= 0°013056 ¢ — 00000092 %, (8)
. = 5°12362 — 1°155 358 £ — 0°000 1964 1% (9)

and where 7 is the time in Julian centuries (ev) of 36525 days from J2000:
t = (JDE — 245 1545.0)/36 525 , (10)

and JDE is the ephemeris Julian day.

The remaining step is to rotate the coordinates from the plane of the mean
ecliptic of J2000 to the mean cquator of J2000, and to convert from spherical
polar to Cartesian coordinates:

X = 7rcosflpeosAo, (11)
Y = r(cosfpsinAgcoseg — sin o sin o) . (12)
Z = r(cosfFosinAgsineo + sin fo cos £0) , (13)

where 7 is piven by Eq. (4) and gg = 23° 2¢/ 217448 is the obliquity of the
ecliptic at J2000 (IAU 1976 value).?!

This modcl has very good precision for on-board flight software use: the rms
error in the lunar position is about 0711, with a maximum crror of about 0%35.
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A NEW MODEL

Many of the cquations involved in computing the position of the Moon us-
ing the method just described involve what is essentially a coordinate transfor-
mation, from ecliptic mean-of-date coordinates to equatorial J2000 Cartesian
coordinates. In this paper, I investigate the possibility of calculating the cqua-
torial J2000 Cartesian coordinates directly by series expansions similar to Eqgs.
(1-3), thus climinating the need for performing the coordinate transformations
in on-board flight software.

We begin by assuming that each of the J2000 equatorial Cartesian coordi-
nates X, may be represented by Fourier sine series:

N,
X, = Z Unm SiD{Wnm £+ 6nm) | (14)
m=1

where X; = X, X, = Y, and X3 = Z; N, is the order of the series for Xn.
We now need to find the amplitudes @nm, frequencies wym, and phase constants
$nm. This may be done by fitting these parameters to the DE200 cphencris
model*?:2% using an cxhaustive search. DE200 is an ephemeris model developed
at the Jet Propulsion Laboratory, and has been used to producce tables in the
Astronomical Almanac since 1984. It caleulates Cartesian coordinates of Solar
System objects, referred directly to the mean cquator and equinox of J2000.
For cach coordinate, the terms of the series in Eq. (14) may be found one
at a time by simultancously fitting the parameters @pnm, Wnm, and é,,, over a
grid of possible values to the DE200 model. An algorithm for accomplishing
this involves calculating the crror €ews between the DE200 model and a “test
model” e sin(wt + &) using cach combination of paramcters a, w, and é:

for a = anin to Gmgs
for w = Whnin to Wigs
for 6 = 5m7’n to 5ma:r,

2100 .
€aws = gizooo[XDEQOO(t) — asin(wt + 5)]2 )

where the summation is over 216 points covering the interval aA.p. 2000 -2100.
The smallest crror €, found gives the best fit parameters a, w, and §. This
process may be repeated several times over successively smaller search ranges
and finer grid spacings in order to find more significant digits for the paramcters.
Once a term has been found, it is subtracted from the DE200 data, and the whole
process repeated on the remaining data to find the next term in the serics.

In the wodel given by Eq. (14), we assume that the amplitudes Onm arc all
positive, so that amplitudes mayv be scarched over a grid of valucs betwoen 0 and
the maximum in the data set. The amplitudes may be assumed to be positive
without loss of generality by allowing the phase constants 8,,, to be scarched
over the entire range 0 to 27 since —sinf = sin(f + ), any potential minus
sign in the amplitude is simply absorbed as an extra 7 radians added to the
phasc constant,.
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Fourier Transform of Lunar X Coordinate
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Figure 1. Fourier spectrum of lunar X coordinate (a.D. 2000- 2100).

Determining a search range for the frequencics wpm 18 somewhat more com-
plicated than it is for the amplitudes and phase constants. A scarch range for
wWnm may be determined by examining the peaks in the Fourier transform X, (w)
of the DE200 data:

Xo(w) = /_oo X (t)e*tdt (15)

where Xn(t) is the position coordinate at time t, and w is the angular frequency.
This Fourier transform may be calculated by using the DE200 modcl to compute
the lunar position vector at N discrete time points t5, then finding the discrete
Fourier transform )f,,_(w,,):

N-1
Xnlwp) = 3 Xalty) €™, (16)
k=0
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where X, (¢) is the position vector at time point i, wp = 27p/ty is the angular
frequency, and p = 0,1,2,..., N — 1. For this study, N = 214 time points were
chosen over the time interval a.p. 2000-2100; the magnitude of the resulting
Fourier transform |X, (wp)| for X is shown in Figurc 1. For cach term in the
series expansion (Eq. 14), a search range is taken around one of the peaks in
the Fouricr spectrum.

This exhaustive search process, which is essentially a curve fit to the DE200
model, required about one week of computer time to find cach term in a series.
and some five months of computer time to find the complete solution to seven
terms per scries. The final results are:

X = 383.0 sin (8399.685 + + 5.381)
+ 31.5 sin (70.990 ¢ + 6.169)
+ 10.6 sin (16 728.377 ¢ + 1.453)
+ 6.2 sin (1185.622 t + 0.481)
+ 3.2 sin (7143.070 t + 5.017)
+ 2.3 sin (15613.745 ¢ + 0.857)
+ 0.8 sin (8467.263 ¢t + 1.010) x 10° m | (17)

Y = 3510 sin (8399.687 t + 3.811)
+ 28.9 sin (70.997 t + 4.596)
+ 13.7 sin (8433.466 t + 4.766)
+ 9.7 sin (16728.380 t + 6.165)
+ 5.7 sin (1185.667 t + 5.164)
+ 2.9 sin (7143.058 t + 0.300)
+ 2.1 sin (15613.755 ¢ + 5.565) x 10° m | (18)

Z = 153.2 sin (8399.672 t + 3.807)
+ 31.5 sin (8433.464 t + 1.629)
+ 12.5 sin (70.996 ¢ + 4.595)
+ 4.2 sin (16728.364 t + 6.162)
+ 2.5 sin (1185.645 ¢ + 5.167)
+ 3.0 sin (104.881 t 4+ 2.555)
+ 1.8 sin (8399.116 + + 6.248) x 105 1 . (19)

where all angles arc given in radians for convenicnce of nuse in software, t is the
time in Julian centuries from J2000 given by Eq. (10), and X, Y. and Z arce
the Cartesian components of the lunar position vector, referred to the mean
cquator and cquinox of J2000. The terms arc arranged in order of decreasing
contribution to the reduction in the error of the model.
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One of the primary advantages of this model is that it allows a lunar ephemeris
to be programmecd in flight software using very little code. Using Egs. (17 -19),
an entire lunar cphemeris model may be programmed in just a fow lines of C
code:

for (m=0; n<3; n++)
{
x{n] = 0.0;
for (m=0; m<7; m++)
x([n] += aln][ml#*sin(w[n] [m] *t+delta[n] [m]);
}

Calculations for the reduction for precession, rotation from the ecliptic to the
equator, and transformation from spherical polar to Carteslan coordinates have
essentially been “absorbed” into the scries cocficients, and so do not need to
be performed explicitly.

DISCUSSION OF THE NEW MODEL

An examination of the frequencics in the terms of the Astronomical Alrnanac
model of Eqs. (1-3) and of the new model of Eqgs. (17-19) gives some interesting
insights into the lunar motion. The frequencics in the Astronornical Almanac
model arc all computed as functions of the mean anomalies and mcan longitudes
of the Sun and Moon,'® while the frequencies in the model given by Eqs. (17-19)
arc determined entirely by a curve fit. We cxamine the origins of some of the
more prominent frequencics in both models below.

Anomalistic Month

The dominant term in the expressions for the ecliptic longitude A (Eq. 1)
and horizontal parallax m (Eq. 3) have a frequency of 477198.85 deg ey~ L.
In deriving the Astronomical Almanac series, this frequency was computed as
the rate of change of the Moon’s mean anomaly. Since the mean anomaly is
measured in the planc of the orbit from the perigee point, onc complete cyele
of the mean anomaly requires the same amount of time as the Moon’s motion
from its perigec point to its next perigee. It comes as no surprise, then, that
this frequency of 477198.85 deg ¢y~ ! is equal to one revolution per anomalistic
month of 27.554 550 days, where an anomalistic month is the time required for
the Moon to move from perigee to perigec.

Draconic Month

For the ccliptic latitude 3 (Eq. 2), the dominant term has a frequency of
483202.03 deg cy™!. This was computed as the rate of change of the Moon’s
mean longitude, which is measured from the vernal equinox to the ascending
node along the ecliptic planc, then from the node to the Moon along the orbit
planc. The Moon will have 3 = 0 only when it is at one of the nodes of the
orbit, and it will next have 3 =0 again (crossing the node in the same direction)
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when it returns to the same node again. We might thereforc expect that the
dominant term in the expression for the ccliptic latitude will be the time required
for the Moon to move from an orbital node back to the same node. Indeed, the
frequency of 483 202.03 deg cy™! is equal to one revolution per draconic month
of 27.212221 days, where a draconic month is the time required for the Moon
to move from an orbital node back to the same node.

Sidereal Month

In the series for X, Y, and Z in the new model (Egs. 17-19), on the other
hand, thc dominant terms all have a frequency of about 8399.685 rad cy™ 1,
which is equal to 1 revolution per sidereal month of 27.321662 days, wherc a
sidereal month is measured with respect to the fixed stars. This is a reflection of
the model having its coordinate system fixed in space (mean of J2000 equatorial
coordinatcs).

Motion of the Apsides

A comparison of the model of Egs. (1-3) with the new model of Egs. (17-
19) shows that the new model includes an important term that does not appear
in the conventional model, having a frequency of about 70.99 rad ¢yl This
frequency reflects the motion of the line of apsides of the lunar orbit. The
expected frequency of this motion may be computed from the periods of the
anomalistic and sidereal months:

27 2
sidereal mo.  anomalistic mo.

27 2 X 36595 days
27.3216624  27.554 5504 cy

70.9932 rad ¢y ! (20)

w =

I

in close agreement with the frequencies found using the curve fit.

ERROR ANALYSIS

The results shown in Eqs. (17-19) have been checked against the DE200
ephemeris model by using DE200 to generate lunar X, Y, and Z coordinates at
229 (over onc million) time points between A.D. 2000 January 1 and a.p. 2100
January 1, corresponding to roughly onc point every fifty minutes for 100 VCATS.
The model shown in Eqs. (17-19) was run at the samc time points, and the
results compared with the DE200 results. This error analysis shows an rms
position crror between DE200 and the new model of Egs. (17-19) of 0°341, and
a maximum crror of 1%033.
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CONCLUSIONS

Three lunar ephemeris models for on-board flight softwarc usc have been
discussed. A modified two-body model is very fast. but is of low precision
and requires constant maintenance in the form of periodic updates of orbital
clements from the ground. The model currently in common use, which is bascd
on the low-precision formulac in the Astronomical Almanac, is of very good
precision and will run indefinitely without ground intervention, but requires code
to convert the calculated ecliptic mean-of-date coordinates to cquatorial J2000
Cartesian coordinates. The method developed in this paper is of intermediate
precision, requires the least code of the three, and will also run indcfinitely
without ground intervention. It may have applications for small missions where
computer resources are limited and its precision is acceptable.
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ABSTRACT

In most direct methods for numerically solving optimal control problems, a standard collocation
technique is used to parametrize the time history of the states and controls. This method reduces the
original infinite dimensional optimization problem to a finite dimensional parameter optimization or
a nonlinear programming problem (NLP). To reduce the computational complexity and size of these
problems, the method of differential inclusion which eliminates the controls from the formulation
has been proposed. It has been suggested that higher order quadrature rules are incompatible with
the differential inclusion concept. In this paper we show that a pseudospectral collocation method
overcomes this drawback in a unique manner. In order to show the effectiveness of this method
as opposed to a direct method based on collocation techniques, we first describe the Legendre
pseudospectral method. This method relies on the structure of orthogonal polynomials and can be
easily adapted for the use in a collocation or a differential inclusion method. We present the simple
cart problem and the Goddard problem by the two formulations and compare the results in each
example.

INRODUCTION

There are two major categories for numerical solution of optimal control problems: Indirect and
direct methods, [1, 2]. The indirect methods involve solving the necessary conditions (costate equa-
tions) derived from the Minimum Principle and essentially solve a two point boundary value problem
(TPBVP). The solution to these problems require the hard task of finding an initial guess for a non-
physical quantity, the costate variable, and even in the cases where a good guess is available, the
radius of convergence for these methods is rather small; therefore, convergence to a solution is not
easily obtained in most cases. To avoid some of the problems encountered in indirect methods, direct
methods have become more popular in applications.

Direct methods can be basically described as solving the optimal control problem by discretiz-
ing it to a parameter optimization problem and then solving the resulting nonlinear programming
problem (NLP). The conversion to a parameter optimization problem can be classified into two
major categories: i) parametrization of the control variable only (as in the POST software), and
ii) parametrization of both control and state variables (as in the OTIS program). In most direct
methods, [2] the conversion to a parameter optimization problem is achieved by first dividing the
time interval into a prescribed number of subintervals whose endpoints are called nodes. The un-
knowns are the value of the control and the states at these nodes, the state and control parameters.
The cost function and the state equations can be expressed in terms of these parameters which ef-
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fectively reduce the optimal control problem to an NLP that can be solved by a standard nonlinear
programming code. The time histories of both the control and the state variables can be obtained
by using an interpolation scheme. In the popular OTIS collocation scheme, for example, cubic
splines are used as the interpolating polynomials over the time segments, [3]. To impose the state
differential equations, the Simpson-Hermite implicit integration scheme is used. In other collocation
schemes used in the works by Conway et al. higher order Gauss-Lobatto [4, 5] or Runge-Kutta type
quadrature rules are used in the collocation scheme [6). The use of higher order integration rules in
a collocation method allows the user a higher order of accuracy with a bigger step size. The larger
step size results in a smaller number of discretization nodes or optimization variables. Since the
efficiency and even convergence of NLP problems improves for a smaller size problem, finding ways
to accurately and efficiently discretize optimal control problems is of great interest in this area of
research.

Recently, Seywald and Kumar [7, 8] have proposed the method of differential inclusion to elimi-
nate the bounded controls from the formulation. When applicable, this idea simplifies the existing
equations greatly and reduces the size and complexity of computations in the discretized version.
Conway and Larson (5] have re-examined this method and its claims, and compare it to the use of
higher order quadrature rules in collocation schemes. By comparing the results for several examples
for the two discretization methods, they conclude that even in the limited cases where the differential
inclusion is applicable (such as linear controls), the reduction in the size of NLP variable from the
elimination of the controls is offset by the reduction in the accuracy in the method. In other words,
for differential inclusion to obtain the same degree of accuracy as in the higher order quadrature
rules, more nodes should be used. The higher number of nodes increases the NLP variables more
than the reduction of the number of NLP variables obtained from the elimination of control variables.
In Ref. [5] this problem with accuracy for the differential inclusion method was attributed to the
use of Euler integration rule for the approximation of the state equation. This explicit integration
rule is easy to use and is yet among the least accurate integration rules. The use of higher order
rules result in implicit integration that makes it impossible to explicitly express the state derivatives
at the nodes in terms of the discrete states.

Intrigued by the claims of this paper by Conway and Larson, we decided to revisit the claims
of both methods by using a spectral collocation scheme which has all the advantages of an explicit
integration scheme while allowing a formulation of differential inclusion. It also has the desired
accuracy of higher order quadrature rules. In fact, for smooth problems, this method has spectral
accuracy [9].

This pseudospectral collocation scheme uses orthogonal polynomials such as Legendre and Cheby-
shev polynomials for approximation of control and state variables. In this manner it differs from the
existing collocation methods which use piecewise polynomials such as linear or cubic splines. These
orthogonal polynomials are used extensively in spectral methods for solving fluid dynamics problems
[9, 10], but their use in solving optimal control problems has created a new way of transforming these
problems to NLP problems. One particular merit of the use of orthogonal polynomials is their close
relationship to Gauss-type integration rules. This relationship can be exploited to derive simple
rules for transforming the original optimal control problem to a system of algebraic equations. The
efficiency and simplicity of these rules are best demonstrated in the Spectral Collocation method that
Elnagar et al. [11, 12] have recently employed to solve a general class of optimal control problems.
In their method (which is the one used in this paper), polynomial approximations of the state and
control variables are considered where Lagrange polynomials are the trial functions and the unknown
coefficients are the values of the state and control variables at the Legendre-Gauss-Lobatto (LGL)
points. With this choice of collocation points and properties of the Lagrange polynomials, the state
equations and the state and control constraints are readily transformed to algebraic equations. The
state differential constraints are imposed by collocating the functions at the LGL points and using a
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differentiation matrix which is obtained by taking the analytic derivative of the interpolating poly-
nomials and collocating them at the LGL points. In this sense, this method of imposing the state
equations is in marked contrast to the numerical integration techniques that are used to approximate
the differential equations in other collocation schemes.

PROBLEM FORMULATION

Consider the following optimal control problem. Determine the control function u(r), and the
corresponding state trajectory x(), that minimmize the Bolza cost function:

T
J(u,x,77) = M[x(rf),rf]+/ L(x,un)dT (1)
with x € R® and u € R™ subject to the state dynamics
x(r) = f(x(r),u(r)),  TE[n,7] (2)
and boundary conditions:
Polx(n), 7] = 0, 3)
Yylx(ry), 7] = 0, (4)

where 9o € RP with p < n and ¥, € R? with ¢ < n. We consider an autonomous system since an
extension to a non-autonomous system is straight forward.
The control inequality and equality constraints are formulated as

glx(r),u(r)] <O g€/, (5)
hix(r),u(r)] =0, he R, (6)

For the differential inclusion formulation, the bounds on the controls are used to generate bounds
on the rate of change of the state variables. In problems where the control can be written explicity
in terms of the states and their rate of change (for example n problems where the control appears
linearly) then this transformation is straightforward. Theoretically, this formulation is based on the
idea of a hodograph, (see [7]). For fixed states x , the hodograph S(x) is defined as the set of all
possible state rates that can be obtained by varying the controls within their bounds. Therefore,

S(x):{:'c:R"lk:f(x,u),uEQ} (M
where €(x) is the set of all admissible controls u € R™

Q(x) = {u= R™|h(x,u) = 0, g(x,u) < 0} (8)

Differential inclusion is based on assuming that there are smooth functions p and q such that the
hodograph can be rewritten as

S(x) = {x = R*| p(%,x) = 0,q(%,x) < 0} 9
Once this mapping (@ — S) is obtained, then Egs. (2), (5) and (6) can be replaced by

p(x,x) = 0 (10)
q(x,x) < 0 (11)
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Note that for the differential inclusion method to work, the controls must also be eliminated from
the cost function as well. Hence, in general, the differential inclusion method cannot be applied
directly to the Bolza problem. It implicitly requires that the Bolza problem be transformed to the
Mayer problem in the usual manner of defining a state variable Zn4+1 whose dynamics are governed
by Zn41 = L(x,u). This is a minor drawback of the differential inclusion method. Hereafter, when
discussing the differential inclusion method, we will assume that the problem has been recast as a
Mayer optimal control problem.

The advantage of using the differential inclusion method is that the controls have been eliminated
in the formulation. In the discretized version of this formulation, the elimination of controls results
in the reduction of the number of optimization variables. This in turn can result in increased
numerical efficiency in solving the optimal control problems numerically by the direct methods. The
disadvantage of differential inclusion is that many problems cannot be rewritten in the form required

by Eq. (9).

THE LEGENDRE PSEUDOSPECTRAL METHOD

In this section, we present a Legendre pseudospectral method (Legendre spectral collocation method)
(see [10, 9]) for solving the optimal control problem formulated in the preceding section. The basic
idea of this method is to seek polynomial approximations for the state and control functions in
terms of their values at the LGL points, (10, 11, 12]. The time derivative of the state vector, x(7),
1s expressed in terms of the state vector x(7) at the collocation points by the use of a differentiation
matrix. In this manner, the optimal control problem is transformed to an NLP problem for the
value of the states and the controls at the nodes.

Although this method is presented in detail Refs. (11, 12, 13], here we provide some details
for the purpose of completeness. Since the problem presented in the previous section is formulated
over the time interval [, 7], and the LGL points lie in the interval [~1,1], we use the following
transformation to express the problem for ¢ € [to,tf] = [~1, 1]

I TO)t;- (s + 70) (12)

It follows that by using Eq. (12), expressions (1-5) can be replaced by

T — T 1

Tx0) (), 77) = Mix(1), 771+ 2572 [ et ugoer (13)
-1

x(t) = (L52) [f(x(t), u (o), (14)

Po(x(~1), 70) Y (15)

Yy (x(1), 74) 0 (16)

8(x(1),u(t) < o (17)

h(x(t),u(t) = 0 (18)

Following Refs. [10, 11, 12], let Ly (t) be the Legendre polynomial of degree N on the interval
[-1,1]. In the Legendre collocation approximation of (13)-(18), we use the LGL points, #;,l =
0,..., N which are given by

to=-1, ty=1,
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and for 1 <1 < N —1, #; are the zeros of Ly, the derivative of the Legendre polynomial, Ly . For
approximating the continuous equations, we seek polynomial approximations of the form

N
N = Y x(t)a(t), (19)
l.}\.ro
¥ty = D ut)élt), (20)
=0
where, for [ =0,1,...,N
1 (t2 = 1)Ln(t)

)

t) =
)= NN+ DI~ (-t
are the Lagrange polynomials of order N. It can be shown that
1 ifl=k
Hilte) = o = { 0 ifl#k
From this property of ¢; it follows that
xN (t) = x(t), u¥ (&) = u(t) (21)

From Equation (21) one can see that the values of the approximate state and control functions at
the collocation points are given exactly by the values of the continuous functions at these points.

To express the derivative xN(t) in terms of xN () at the collocation points t;, we differentiate
(19) which results in a matrix multiplication of the following form [13]:

N
xN (tk) = Z Dk[x(tz), (22)
. =0

where Dy are entries of the (N +1) x (N + 1) differentiation matrix D

(Gl A k£
_N(N+1) E=1=0
D = [Du] = 1 * (23)
N 1\;-&-1 k=1= N
0 otherwise

In addition, the integral in (13) is discretized by
1 N
/ LixN uMydt m S Law, bi)w (24)
-1

where wy are the weights given by
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To facilitate the NLP formulation, we use the notation
a = x(t), by == u(t).

For the derivative of the state vector x(t), collocated at the points t;, we rewrite Eq. (22)

N
ek =xV(t) = Dua. (25)
i=0

The state equations and the initial and terminal state conditions are discretized by first substi-
tuting (22)-(25) in (14) and collocating at the LGL nodes, tx. This process results in the optimal
control problem (13)-(18) discretized by by the following NLP: Find coefficients

az(aOvala-"yaN)rbz (b05b1y--'7bN)

and possibly the final time 7y to minimize

N
JV(a,b) = Tf—;TEZc(ak,bk)wk + M(ay, ) (26)

k=0

subject to

Ac(a,b) = (”—;E)f(ak,bk) ~ck=0, k=0,...,N, (27)
Bk(a,b) = glag, by) <0, k=0,...,N, (28)
Ck(a,b) = h(ak,bk):O, k:O,...,N, (29)
Yo(ao, ) = 0, (30)
Yi(an, 7)) = 0. (31)

When possible, (i.e., a user obtaining an explicit mapping from  to S cf. Eq. (9)), the differential
inclusion formulation of these discretized equation is straigthforward. The NLP reduces to finding

a = (ag,ay,...,an) and possibly the final time 7s to minimize the transformed Mayer cost
IV (a) = M(an, ) (32)
subject to
Ai(@) = plak,c)=0 k=0,... N, (33)
Bi(a) = q(ar,cx) <0, k=0,...,N, (34)
Po(ao,70) = 0, (35)
‘l[)j (aN,rf) = 0. (36)

The equations above show that in both the collocation and the differential inclusion formulations,
the discretized equations preserve the structure of the continuous ones. By collocating the equations
at the LGL points, and using the properties of the Lagrange polynomials, the functions are evaluated
only at the LGL points without depending on the neighboring points. The derivative of the states is
expressed in terms of the differentiation matrix (cf. Eq. (25)) which can be used in the differential
inclusion formulation to express the state rates in terms of the state variables at the nodes. In
this manner this method of discretization is quite different from the Euler integration rule used in
Seywald’s formulation:

Xit1 = X; + X; A, (37)



or the higher order trapezoid rule:

Xip1 = Xi + (At:/2)[%; +Xig1] (38)

As mentioned in Ref. [5], the more accurate integration rules such as trapezoid or Simpson are
implicit integration rules which make expression of the state derivatives at the ith node in terms
of the state variables impossible. With our formulation of the Legendre pseudospectral method, we
have circumvented this difficulty and offer a method which is both accurate and adaptable to the
differential inclusion formulation.

NUMERICAL EXAMPLES

Example 1: The Simple Cart Problem

As a first example, we consider the simple cart problem which has been considered as one of the test
problems by Conway and Larson [5]. This problem has an analytic solution and has a linear control
and a quadratic cost function with a fixed final time. The state variables are z,, the displacement
of the cart of unit mass, and z, the velocity, and the control u is the external force.

The equations of motion are

£, = Z2 (39)
£y = =—zZ2+u (40)
The cost function to be minimized is .
J= / u? dt (41)
0

The initial conditions are the rest conditions,
z1(0) =0,22(0) =0
The final time condition is
¥ = za(ty) — 2.694528z4(ts) + 1.155356 = 0 (42)

For t; = 2.0 this problem has the following analytical optimal solutions:

uft) = 1€ 73 (43)
3 , 1, 1, .1
_ 3 Le_ 2 4
z1(t) g€ + 3¢ 2t+ 7 (44)
3 _, 1, 1
_ 3 L 4
z2(t) g€ +3¢ 73 (45)
The optimal cost function has the value
2
J :/ u?dt = 0.577678 (46)
0

In (5] the problem is solved by both the Simpson collocation rule and the differential inclusion
method for N time segments, N =5, 10, 20. For N segments, there are N = N + 1 nodes. In the
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N Method Ji IJi = Janal N; | Execution Time (Seconds)
Analytic solution 0.577678

6 | Collocation (Simpson) | 0.577668 0.00001 18 N/A
6 Diff. Inc. (Euler) 0.582800 0.005122 12 N/A
6 Collocation (LGL) 0.577678 8.34491e-07 | 18 3.63
6 Diff. Inc. (LGL) 0.582800 | 1.1770142e-06 | 12 2.13
11 | Collocation (Simpson) | 0.577678 0.00000 33 N/A
11 Diff. Inc. (Euler) 0.578935 0.001257 22 N/A
11 Collocation (LGL) 0.577677 | 1.028268e-07 | 33 12.42
11 Diff. Inc. (LGL) 0.577677 1.372542e-07 | 22 9.34
21 | Collocation (Simpson) | 0.577682 0.000004 63 N/A
21 Diff. Inc. (Euler) 0.577990 0.000312 42 N/A
21 Collocation (LGL) 0.57767798 | 1.546971e-08 | 63 51
21 Diff. Inc. (LGL) 0.5776780 | 6.8009795e-09 | 42 55

Table 1: Comparison of the Collocation and Differential Inclusion Methods

Simpson’s rule the number of optimization parameters N, for n states and m controlsis nx N+mx N ,
while for the differential inclusion formulation where the m controls are eliminated, Ny =nxN.
The same number of optimization parameters are used for the LGL formulation of these methods.

As indicated earlier, it is necessary to recast this problem in a Mayer format for the application
of the differential inclusion method. In Tables 1 and 2, we compare our results with those of Ref.
(5]. As one can see, for all N the results for both the collocation and the differential inclusion based
on the LGL discretization are more accurate than the results for Simpson or the Euler formulations.
It appears that the LGL collocation method is the most accurate method and compared to the LGL
differential inclusion offers more accuracy for fewer number of nodes. This observation is in line with
the comparison of the Simpson and Euler differential inclusions. But in the LGL discretization the
error is a lot smaller in both formulations and both are better than the results reported in {5]. In
general, the error in the cost function decreases as NV increases in all these problems.

All the examples were run with the random initial guesses, and the run-time for the problems
show that the LGL implementation of the differential inclusion method ran with somewhat faster
speeds when compared to the LGL collocation method with comparable accuracy.
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N Method u(tf) xl(tf) :L‘g(tf)

Analytic solution 1.347264 | 0.122881 | 0.474383

6 | Collocation (Simpson) | 1.326334 0.122749 | 0.474333
6 Diff. Inc. (Euler) N/A 0.131702 | 0.477656
6 Collocation (LGL) 1.344735 | 0.122881 | 0.474382
6 Diff. Inc. (LGL) N/A 0.123095 | 0.474461

11 | Collocation (Simpson) | 1.342595 0.122815 | 0.474358

11| Diff. Inc. (Euler) N/A | 0.125050 | 0.475188
11| Collocation (LGL) | 1.346640 | 0.122911 | 0.474393
11| Diff. Inc. (LGL) N/A | 0.122839 | 0.474367

21 | Collocation (Simpson) | 1.346748 0.122868 | 0.474377

21 Diff. Inc. (Euler) N/A 0.123432 | 0.474587
21 Collocation (LGL) 1.346748 | 0.122868 | 0.474377
21 Diff. Inc. (LGL) N/A 0.123122 | 0.474472

Table 2: Comparison of final states for the Simpson , Euler Differential Inclusion and LGL Methods

Example 2: Goddard Problem

The second example is the Goddard problem which is to determine the optimal trajectory for
maximizing the final altitude for a rocket ascending vertically. The acting forces are the inverse-
square gravitational force and the atmospheric drag.

The variables are: the radial distance 7, the velocity v, and mass m. The Thrust magnitude 7 is
the control variable and is within the fixed bounds 0 < T < Tpnas- The state constraint is a dynamic
pressure limit ¢ < gmaz, With ¢ = Lpv?, where p = poe?(177) is the atmospheric density. The control
problem is formulated as finding T to maximize r(ry) subject to the equations of motion

dr
- = 47
dr v (47)
o _ T-D_ ¢
dr m re’
dm _ T (48)
dr c
where the control T is subject to the constraint
0< T < Tmas (49)
The aerodynamic drag D is given by
D = qCpA (50)
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In nondimensional units, the boundary conditions are
r(0) = 1.0, v(0) = 0,m(0) = 1.0 (51)
v(ry) = free, m(r;)=m; =06 (52)

The state inequality constraint is

1 -
Epoeﬁ(l r)v2 ~fmaz <0

The nondimensional values used in calculation are the ones used in [7):

Cp =0.05, (poA) = 12,400, 3 = 500, ¢ = 0.5, Trmor = 3.5, p = 1.

The Differential Inclusion Formulation

The differential inclusion formulation is based on eliminating the controls from the state equations
by using the equality and inequality constraints on the controls. In this problem, equation (48)
defines T the control in terms of m the mass, i.e.,

dm

T= —CF = —cm.

Using this and Eq. (49) the control can be eliminated resulting in the following constraints

%—v = 0, (53)
:_:4.0""_;24_% = 0, (54)
o Ime o, (55)
“am <, (56)

The initial conditions, final time conditions and the state inequality constraints remain the
same as before. In a direct comparison to Seywald’s results, Figures (1)-(4) show our results for
gmaz = oo while Figures (5)-(8) display the same for gmaz = 10. It is clear that the collocation (CO)
and differential inclusion (DI) methods show no noticeable difference in the results for the same
number of nodes. As demonstrated for N = 11, the differential inclusion and collocation results are
indistinguishable. What does make the difference, however is the computer run time. In all cases ,
the (DI) method runs much faster than the (CO) method. The run times are displayed in Table 3.
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The following set of computation was carried out with the constrained ¢ where ¢ < g4 = 10.
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Computer Run Times

N | (CO) Method Run Time (DI) Method Run Time

5 89.40 sec 14.05 sec
10 194.5 sec 30.58 sec
20 2400 sec 301.5 sec

Table 3: Comparison of Run Times

CONCLUSIONS

The crux of the problem is in the implementation of the state dynamics equations. In direct colloca-
tion, the state equations are implemented as equality constraints whereas in the differential inclusion
approach, they assume the form of both inequality and equality constraints. For the differential in-
clusion method to work, the value of the rate of change of state variables at the ith node should be
expressible in terms of the discrete states. This limits the scope of the discretized differential inclu-
sion method to simple Euler integration rules. Consequently, the gains obtained in reducing the size
of the problem in differential inclusion method are lost due to the use of the less accurate Euler rule
which requires more nodes to maintain acceptable accuracy. The pseudospectral collocation method
presented in this paper overcomes these drawbacks since the calculation of the state derivatives in
this method allows for expressing the derivative at the ith node as a linear combination of the dis-
crete nodes. In this manner, the discretization of the derivative of the states is significantly different
from the integration rules used in other collocation methods. The use of this highly accurate spec-
tral collocation method in the discretization of the problem, makes the differential inclusion method
quite competitive to direct collocation methods that employ the high order quadrature rules.
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ABSTRACT

An optimal control approach using variable-structure (sliding-mode) tracking for large angle
spacecraft maneuvers 1s presented. The approach expands upon a previously derived regulation result
using a quaternion parameterization for the kinematic equations of motion. This parameterization is
used since it is free of singularities. The main contribution of this paper is the utilization of a simple
term in the control law that produces a maneuver to the reference attitude trajectory in the shortest
distance. Also, a multiplicative error quaternion between the desired and actual attitude is used to derive
the control law. Sliding-mode switching surfaces are derived using an optimal-control analysis. Control
laws are given using either external torque commands or reaction wheel commands. Global asymptotic
stability is shown for both cases using a Lyapunov analysis. Simulation results are shown which use the
new control strategy to stabilize the motion of the Microwave Anisotropy Probe spacecraft.

INTRODUCTION

The control of spacecraft for large angle slewing maneuvers poses a difficult problem. Some of
these difficulties include: the highly nonlinear characteristics of the governing equations, control rate
and saturation constraints and limits, and incomplete state knowledge due to sensor failure or omission.
The control of spacecraft with large angle slews can be accomplished by either open-loop or closed-loop
schemes. Open-loop schemes usually require 2 pre-determined pointing maneuver and are typically
determined using optimal control techniques, which involve the solution of a two-point boundary value
problem (e.g., the time optimal maneuver probleml). Also, open-loop schemes are sensitive to
spacecraft parameter uncertainties and unexpected disturbances.? Closed-loop systems can account for
parameter uncertainties and disturbances, and thus provide a more robust design methodology.

In tecent years, much effort has been devoted to the closed-loop design of spacecraft with large
angle slews. Wie and Barba® derive a number of simple control schemes using quaternion and angular
velocity (rate) feedback. Other full state feedback techniques have been developed that are based on
variable-structure (sliding-mode) control, which uses a feedback linearizing technique and an additional
term aimed at dealing with model uncertainty.* A variable-structure controller has been developed for
the regulation of spacecraft maneuvers using a Gibbs vector parameten'zation,5 a modified-Rodrigues
parameterization,6 and a quaternion pa:ameterization.7 In both [3] and [7], a term was added so that the
spacecraft maneuver follows the shortest path and requires the least amount of control torque. The
variable-structure control agproach using a quaternion parameterization has been recently expanded to
the attitude tracking case.t” However, these controllers do not take into account the shortest possible
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path as shown in Refs. [3] and [7]. This paper expands upon the results in Ref. [7] to provide an optimal
control law for asymptotic tracking of spacecraft maneuvers using variable-structure control.

The organization of this paper proceeds as follows. First, the kinematic and dynamic equations of
motion are summarized. Then, an analysis for the selection of the switching surfaces is shown. This is
shown using both an optimal control approach and a Lyapunov stability-based approach. Also, variable-
structure considerations will be investigated. Next, a variable-structure controller is derived using either
external torque inputs or reaction wheels. Finally, simulation results will be shown which use the new
control law to stabilize the motion of the Microwave Anisotropy Probe spacecraft.

BACKGROUND

In this section, a brief review of the kinematic and dynamic equations of motion for a three-axis
stabilized spacecraft is shown. The attitude is assumed to be represented by the quaternion, defined as'®

q
g s[ 13] )
44
with
q1
q13=| gy |=nsin(®/2) (2a)
q3
q4 =cos(®D/2) (2b)

where 7 is a unit vector corresponding to the axis of rotation and @ is the angle of rotation. The
quaternion kinematic equations of motion are derived by using the spacecraft’s angular velocity (@),
given by

o1 1.
§=-Qa)q=-E(q)w 3)
2 2
where Q(®@) and =(q) are defined as
—{@x] @
Q(w) = T Do (4a)
~oT 1 0
al3x3 +[@13 ]
E(g)=| oo (4b)
-3

where I, , represents an nxn identity matrix (also, 0,,,, will represent an nxm zero matrix). The
3x3 dimensional matrices [@x] and [q13 x] are referred to as cross product matrices since
axb=[ax]b, with

0 —a3 ap
[a X] =| a3 0 —ay (5)
—ay a) 0
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Since a three degree-of-freedom attitude system is represented by a four-dimensional vector, the
guaternion components cannot be independent. This condition leads to the following normalization
constraint

qaTg=abaq3+4i =1 ©)
The matrix Z(g) obeys the following relations that are extremely useful
=7 (g)2(g) = 4" 9 Tax3 (72)
=)= (9)=9"qlaxs =99 (7b)
=7(g)g =03 (7¢)
=T(q)¢ =-E7({)g forany ax (7d)
=" ($)=(e) = {(qTf) L33 +[ET(§)‘I x]} for any {4x (7e)
Also, the error quaternion between two quaternions, ¢ and g4, is defined by
K- JEA -
&=|:5q4:\—4®‘1d ®

where the operator ® denotes quaternion multiplication (see Ref. [10] for details), and the inverse
quaternion is defined by

g7 = [—le 44, —9d4, 9d, ]T 9)

Other useful identities are given by
8113 =="(94)4 (102)
&4=9"94 (10b)

Also, if Equation (8) represents a small rotation then &gy =1, and dg;3 corresponds to half-angles of
rotation.

The dynamic equations of motion, also known as Euler’s equations, for a rotating spacecraft with are
: 11
given by

Jo=-ox(Jo)+u (11)

where J is the inertia matrix of the spacecraft, and u is the total external torque input. If the spacecraft
is equipped with 3 orthogonal reaction or momentum wheels, then Euler’s equations become:

(/-T)o=-ox(Jo+Io)-7 (12a)
J(@+o)=u (12b)

where 7 is the diagonal inertia matrix of the wheels, J now includes the mass of the wheels, @ is the
wheel angular velocity vector, and & is the wheel torque vector.
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SELECTION OF SWITCHING SURFACES
Optimal Control Analysis

The varable-structure control design is used to track a desired quaternion g, and corresponding
angular velocity @;. As shown previously for regulation,” under ideal sliding conditions, the trajectory

in the state-space moves on the sliding manifold. For tracking, the following loss function is minimized
to determine the optimal switching surfaces:

(@) =%J‘w[p&1};&113 +(0)—a)d)T(a)-wd)]dz (13)

subject to the bilinear system constraint given in Equation (3). Note that p is a scalar gain and I, is the
time of arrival at the sliding manifold. Minimization of Equation (13) leads to the following two-point-
boundary-value-problem:

.

q=5.:(q)w (14a)
. - - 1 -
A=-pZ(a4)E(g4)q +E:.(/1)a) (14b)
1_
w-0;=--2"(q)A (14c)
where A is the co-state vector. The following sliding vector is chosen:

s=(@-@,)+k="(g,;)g=0 (15)

where k is a scalar gain. The sliding vector is optimal if the solution of Equation (15) minimizes
Equation (13). This can be proven by first substituting Equation (15) into Equation (14¢) and using the
matrix identities in Equation (7), yielding

A=-2kq, (16)
Next, using the fact that the desired quaternion can be obtained from the following
4 = %E(qd)wd an
leads directly to
A=-kZ(q;) 0, (18)

Comparing Equation (18) to Equation (14b), and using Equation (15) now leads to the following
relationship:

~kZ(gy) @4 =~p=(a4)E (g2)0 -k Z(qq) @4 +k°Z(g4)ET (q,4)q (19)

Equation (19) is satisfied for k = i\/; . Therefore, the sliding condition in Equation (15) leads to an
optimal solution (i.e., minimum IT in Equation (13)).

For this special case, it can be shown that the value of the loss function in Equation (13) is given by
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" = 2k[1- dg4(t,)] (20)

where k must now be strictly positive. Note that &g, corresponds directly to the cosine of half the angle
error of rotation. Both & and —dg represent the same rotation; however, the value of the loss function
in Equation (20) is significantly different for each rotation. One rotation (dg) gives the shortest distance
to the sliding manifold, while the other (—dg) gives the longest distance. Although each rotation gives

the same orientation, more energy may be required to maneuver the spacecraft using —d&g. In order to
give the shortest possible distance the following sliding vector is chosen:

s =(@—-@,)+ksgn[8g4(t)]=" (94)a=0 @1)

where it is assumed that dg4(t,) is non-zero for a finite time. Using this sliding condition leads to the
following value for the loss function:

1" = 2k [1-[3g4 (1 )] (22)
which yields a minimal value for any rotation. The kinematic equation for dg4 can now be written as
.1 .
&g = -2-k(1 ~ &7 )sign[&g4(15)] (23)

Therefore, the derivative &j is either positive or negative depending on the sign of 4 (ts), so the term
sgn[5q4 (2 )] can be replaced with sgn[5q4(t—ts)] without loss in generality (note, this corresponds to
the time after the sliding manifold is reached).

Lyapunov Analysis

The sliding vector shown in Equation (21) can also be shown to be stable using a Lyapunov analysis.
The time derivative of Equation (10a) can be shown to be given by

&3 =‘;“574 (a)—wd)+%[&113 x|(@+®,) (24)
Next, the following candidate Lyapunov function is chosen:
V= %&1{3&113 25)
Using the sliding vector in Equation (21), the time derivative of Equation (25) is given by
Vs =—%kléq4l&£&m <0 (26)

Hence, V, is indeed a Lyapunov function for k>0. This analysis generalizes the results shown in Ref.
[9], where the spacecraft’s attitude is restricted in the workspace defined with g4 > 0.

Sliding Manifold Considerations

The term sgn[&q4 (2 )] is used to develop a control law that yields the shortest distance to the sliding

manifold. However, in actual practice this manifold is difficult to visualize. This section shows an
analysis for the optimality conditions during the transient response of the control design. The goal of the
controller is to drive s — 0. Since the norm-squared of sliding vector is closely related to the energy of
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the system, this can be useful to determine the optimal maneuver conditions for the spacecraft controller.
Consider the following sliding vector:
s=(@-@4)+vET(g5)q 27)

where ¥ is some scalar (note: the sliding vector is now assumed to be non-zero). The following
performance measure can be used to quantify how fast the sliding mode manifold is reached:

1 [ 1 [ T _
5-[ sTs dt=5J‘ [(a)-wd) (@-@,)+ v 8qLd; +2l//(a)—a)d)T:.T(qd)q]dt (28)
Iy Io

where #; corresponds to the time to reach s=0. The integral in Equation (28) during the transient
response should be evaluated in order to determine how various choices of y affect the transient
response. However, a closed-form solution for the integral is extremely difficult to obtain in this case,
since one now requires knowledge of the actual control inputs which affect the angular velocity and
attitude. Still, a closed-form solution for the last term in Equation (28) can be found without this
knowledge. The time derivative of Equation (10b) can be shown to be given by

] 1 - -
&4 =‘5(‘”-wd)r-’-r(qd)‘1 (29)

The last term in Equation (28) is now given by
1{h T T
5_[ [2 y(w-o,) = (‘ld)q]dt =2y &g4(t1) - G4 (1o)] (30)
Iy

Therefore, once a control has been determined then only the first two terms of the right-hand-side of
Equation (28) need to be numerically determined. It will be shown through an analysis of the closed-
form structure of Equation (29) that y = ksgn[dg4(z)] should be used at all times (even before the

sliding manifold is reached) in order to produce a response in the shortest distance. Equations (28) and
(30) can be used to validate this approach from dynamic numerical simulations.

VARIABLE-STRUCTURE TRACKING

The goal of the variable-structure controller is to track a desired quaternion g, and corresponding
angular velocity @ ;. The variable-structure control design with external torques only is given by

u=[ox]Jo+ J{%ksgn(&h )[ET(q)E(qd)a)d —ET(qd)E(q)w]+a')d - Gz?} €3))

where G is a 3x 3 positive definite, diagonal matrix, and the i® component of # is given by
01' = Sat(s,-, Ei), =123 (32)

As stated previously, the term sgn(5q4) is used to drive the system to the desired trajectory in the

shortest distance. The saturation function is used to minimize chattering in the control torques. This
function is defined by
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1 for 5; > E;
sat(s;, €;) = % for |sj| <& i=12.3 (33)
-1 for s;<-¢;

where ¢ is a small positive quantity. Also, the sliding manifold is given by

s=(@-@,)+ksgn(24)E (94)a (34)

The stability of the closed-loop system using this controller can be evaluated using the following
candidate Lyapunov function

1 71
V==—s"S§ 35
3 (35)

Using Equations (11), (31), and (34) the time-derivative of Equation (35) can be shown to be given by
V=-sG8 (36)
which is always less than or equal to zero as long as G is positive definite.

If wheels are used to control the spacecraft, then the sliding mode controller is given by the
following:

7 =-[ox](Jo+ 75)+(J—7){%kSgn(5q4)[ET(qd)_=_(q)w—sT(q)s(qd)wd]—a')d +Gz9} (37)

The stability of the system can also be easily proven using the Lyapunov function in Equation (35).
Analysis

In this section an analysis of using sgn(5q4) for all times in the control law is shown. We first
assume that the desired angular velocity is zero ((od =0) and that the matrix G is given by a scalar

times the identity matrix (g I3x3). We further assume that the thickness of the boundary layer € and the
gain g are sufficiently large so that

G =pw+ Pksgn(14) 13 (38)
where = g/€. Using Equations (11), (24), and (31), the closed-loop dynamics for @ now become
o= ksgnl(da) 7 (1) Sy 0~ o= Bisgn(F1a) (39)
Next, using Equation (7e) with { = g4 leads directly to
= —%ksgn(&u){aﬁhxs +[én3 ¥} - Bo- Bk sgn(dgy )13 (40)

Taking the time derivative of Equation (29), and using both Equation (40) and the quaternion constraint
equation yield

S+ Ll )i+ i3l 5070 Jo =5 Pl @

207



Equation (41) represents a second-order nonlinear spring-mass-damper type system with an exogenous
step input. The stability of Equation (41) can be evaluated by considering the following candidate
Lyapunov function

Vir, =5 8 +3( 307 ok + L pu1- dpysen(ny )] @)

Also, the last term in Equation (41) is always greater or equal to zero since B£>0, k>0, and
0<dg4sgn(dg,)<1. Next, we assume that &g, is non-zero for a finite time. This is a valid assumption

since the control law is known to produce asymptotic tracking in the closed-loop attitude response.
Therefore, taking the time-derivative of Equation (42), and using Equations (40) and (41) give

Ve, =~ 1o 8) 0 -3+ Leiay )7 ) 3 @)

Hence, since £>0 and k>0, Equation (42) is indeed a Lyapunov function. The advantage of using
sgn(dg,) in the control law at all times (even before the sliding manifold is reached) now becomes clear.
The step input in Equation (40) is a function of sgn(5q4). Therefore, the response for g4 will approach
sgn(&;4) for any initial condition. This tends to drive the system to the desired location in the shortest

distance. Furthermore, this inherently takes into account the rate errors as well. For example say that
&4(%p) is positive, and that a high initial rate is given which tends to drive the system away from
dg4 =1. The control law will automatically begin to null the rate. But, if the initial rate is large enough
and the control dynamics are relatively slow, then &9, may become negative. Since sgn(5q4) 1s used in
the control system, then from Equation (40) the control law will subsequently drive the system towards
&q4 =—1. Therefore, using sgn(dg,) at all times produces an optimal response for any type of initial
condition error.

Robustness

In this section the robustness of the variable-structure controller with respect to modeling errors and
external disturbances is addressed. This closely follows the approaches shown in Ref. [12]. We first
define the following bounded modeling errors for the inertia matrix:

J=J+AJ (44a)
Jl=j1l, & (44b)

where J is the nominal inertia matrix. Next, neglecting the gyroscopic term in Euler’s equations, and
adding an external disturbance input yields

@=Jlu+77ld (45)

where d denotes a bounded disturbance input. Under these conditions the time-derivative of the sliding
manifold can be approximated by

§ = d]j{%ksgn(&u)[ir(q)E(qd)a)d —ET(qd)E(q)a)]+('od —Gz}}— JUce+ila )

where it is assumed that the higher-order perturbations in the inertia matrix are small. Also, we again
assume that the thickness of the boundary layer £ and the gain G are sufficiently large to keep the time
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derivative of the associated Lyapunov function negative-definite with modeling errors and external
disturbances. Then the dynamics of the sliding manifold reduce down to

s=_Ll565407d (47
E

Therefore, if the time derivative of the sliding manifold is small after all transients have decayed, then s
will satisfy the following inequality
Y |
s <|e(J G)

2| ax (48)

Equation (48) is valid using either external torques or reaction wheels in the control system.

ATTITUDE CONTROL OF MAP

In this section, the variable-structure controller is used to control the attitude of the Microwave
Anisotropy Probe (MAP) spacecraft from quaternion observations and gyro measurements. The
spacecraft is due to be launched around the year 2000. The objective of the MAP mission is to create a
full-sky map of the cosmic microwave background and measure anisotropy with 0.3° angular resolution,
in order to answer fundamental cosmological questions such as, inflationary versus non-inflationary “big
bang” models, accurate determination of the Hubble constant, and the existence and nature of dark
matter.

The ideal orbit for the MAP spacecraft is about the Earth-Sun L, Lagrange point, which is a
Lissajous orbit with approximately a 180-day period. Because of its distance, 1.5 million km from
Earth, this orbit affords great protection from the Earth’s microwave emission, magnetic fields, and
other disturbances, with the dominant disturbance torque being solar radiation pressure. It also provides
for a very stable thermal environment and near 100% observing efficiency, since the Sun, Earth, and
Moon are always behind the instrument’s field of view. In this orbit MAP sees a Sun/Earth angle
between 2 and 10 degrees. The instrument scans an annulus in the hemisphere away from the Sun, so
the universe is scanned twice as the Earth revolves once around the sun.

The spacecraft orbit and attitude specifications are shown in Figure 1. To provide the scan pattern,
the spacecraft spins about the z-axis at 0.464 rpm, and the z-axis cones about the Sun-line at 1 rev/hour.
A 22.5°+0.25° angle between the z-axis and the Sun direction must be maintained to provide a constant
power input, and to provide constant temperatures for alignment stability and science quality. The
instrument pointing knowledge is 1.8 arcmin (1o), which is not required for onboard or real-time
implementation.

The spacecraft’s attitude is defined by a 3-1-3 Euler angle rotation relative to a rotating, Sun-
referenced frame. The three Euler angles are @4, 6,4, and ¥4, and the desired states for observing mode

are

$g= 1%‘1 = 0.001745%2% (49a)
8, =22.5°=0.3927rad (49b)
W 4 =0.464 rpm = 0.04859-:—‘0i (49¢)
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Fig. 1 MAP Spacecraft Specifications

The desired Euler angles for ¢; and y; are determined by integrating the Euler rates. Also, 9d is set to
zero. The commanded quaternion is determined using

94, = sin(%’) cos(qj‘i_Ty/d (50a)
—w)

da, = sin(%’)sin(%—z‘”i (50b)

94, = cos(g—zd-)sin(ﬁi—;—y—/i (50c)

94, = cos(ez—d) cos(ﬂ-—;ﬂ) (50d)

The kinematic equation that transforms the commanded Euler rates to the commanded body rates is
given by
sinfysinyy; cosyy; O ¢4
@y =|sinfycosy,; -siny,; 08, (51)
COos 6’d 0 1 l// d
A number of simulation studies have been performed in order to test the variable-structure controller

performance. The first test case involves a slewing maneuver using the following initial condition for
the actual quaternion:

q(z0)=[0 0 sin(®/2) cos(®/2)]" ®q,(zo) (52)
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where the angle of rotation error has been set to @ =60°. Also, the actual angular velocity has been set
to the desired angular velocity. This case uses external torques to maneuver the spacecraft. The control
system has been designed to bring the actual attitude to the desired attitude in less than 20 minutes. The
gains used in the control law are: k=0.015, G=0.0015I33, and £=0.01. A plot of the roll, pitch, and

yaw attitude errors are shown in Figure 2. Clearly, the control system achieves the desired performance.
Plots of the angular velocity errors and control torques are shown in Figures 3 and 4, respectively. The
sinusoidal components of the control torques in the X and Y axes are used to achieve the desired spin
motion.

The next case shows how using ksgn[5q4 (t)] in the variable-structure controller achieves an optimal
response (i.e., in the shortest distance). For this case, the initial attitude is given using Equation (52)
with ®=60° again. However, a large initial angular velocity error has been introduced, with
a(tg)=-5 @ 4(to). This tends to drive the spacecraft in the opposite direction of the desired attitude. A
plot of dg4(z) using ksgn[5q4(t)] (solid line) in the controller and &g (r) using just k (dotted line) in the
controller, analogous to the approach in [8] and [9], is shown in Figure 5. Clearly, using ksgn[&]4(t)] in

the variable-structure controller achieves a faster response with less transients. This is also shown in the
angular velocity responses, shown in Figures 6 and 7. Also, a plot comparing the magnitudes of the
control inputs using ksgn[§q4(t)] (solid line) and using & (dotted line) is shown in Figure 8. Using

ksgn[5q4(t)] results in a 22% reduction (root-mean-square) in the control effort to achieve the desired
reference attitude and angular velocity.

To further illustrate the importance of using ksgn[5q4 (t)], a number of other simulations have been

run for a rest-to-rest maneuver with the desired attitude set to the identity quaternion, and the desired
angular velocity set to zero. The initial actual velocity has also been set to zero, and the initial

quaternion has been computed using Equation (52). Test cases have been executed using @ =210°,

240°, 270°, 300°, and 330°. For all these test cases the spacecraft has been controlled using reaction
wheels. A plot of the (&'14,&14) phase plane is shown in Figure 9 (solid lines correspond to using

ksgn[§q4 (t)] and dotted lines correspond to using k in the controller). Although not shown here, the
response is the same for 0° <® <180°. However, using ksgn[dq4(t)] produces a response that is

always optimal for any rotation error angle. Equation (28) has also been evaluated for each @ used in
this simulation. Table 1 summarizes the results for ksgn[5q4(t)] and just k only. Clearly, by using

ksgn[5q4 (t)] in the control law, better performance is achieved in the closed-loop system than using just
k. This again shows that ksgn[&q4 (t)] is important in the variable-structure controller.

The final simulation shows how Equation (48) can be used to bound the steady-state errors. For this
simulation the following external disturbance has been added:

0.0055sin(0.05¢)
d= 0.003 (53)
0.005co0s(0.0517)

A plot of the sliding manifold s and associated bound using Equation (48) is shown in Figure 10. This
clearly shows the effectiveness of Equation (48) to accurately bound the sliding manifold errors.

211



Table 1 Cost Function Values for Various ®

1 [~
Value of — sTs dr
2 z,

0

® (deg) | kcase | ksgn[dg,(r)] case
210 1.0787 0.9313
240 0.8988 0.6543
270 0.6136 0.3566
300 03185 0.1300
330 0.1095 0.0194
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CONCLUSIONS

A new variable-structure controller for optimal spacecraft tracking maneuvers has been shown. The
new controller was formulated for both external torque inputs and reaction wheel inputs. Global
asymptotic stability was shown using a Lyapunov analysis. A simple term in the control law was used
to produce a maneuver to the reference attitude trajectory in the shortest distance. The sliding motion
was shown to be optimal in the sense of a quadratic loss function in the multiplicative error quaternions
and angular velocities. A simulation study was performed which uses the new control law to stabilize
the motion of the Microwave Anisotropy Probe spacecraft. Results indicated that the addition of the
simple term in the control law always provides an optimal response, so that the reference attitude motion
is achieved in the shortest possible distance.
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ABSTRACT

Thermal snap disturbances are known to affect the attitude dynamics of low Earth orbiting
satellites during orbital eclipse transitions. Prominent examples of satellites experiencing the disturbances
include the TOPEX, UARS and LANDSAT satellites. Thermal snap disturbances result from thermally-
induced structural motions of flexible appendages such as deployable booms and solar arrays. Motions of
flexible appendages lead to rigid body rotations of the entire satellite, since the total angular momentum of
the system must be conserved. These potentially large attitude disturbances may violate mission pointing
accuracy and jitter requirements. To fully understand thermal snap disturbances, it is necessary to develop
a detailed understanding of the thermal-structural behavior of flexible satellite appendages. This paper
describes recent studies of the thermal-structural performance of solar panels including an analysis of
satellite attitude dynamics resulting from solar panel thermally-induced structural motions during orbital
eclipse transitions and a laboratory investigation of the thermal-structural performance of a solar panel
from NASA's Transition Region and Coronal Explorer (TRACE) satellite.

INTRODUCTION

The thermal-structural performance of deployable appendages can have a significant impact on
the attitude dynamics and control of satellites. Nonuniform thermal loading can give rise to a Cross-
sectional temperature differences in appendages which, due to differential thermal expansion, result in
structural deformations. Additionally, rapid changes in thermal loading initiated as a satellite exits or
enters the Earth's shadow may excite dynamic structural motions.! Thermally-induced structural motions
(TISM) of flexible satellite appendages may be classified as: thermal bending, thermal snap, thermally-
induced vibrations, or thermal flutter. Thermal bending motions are quasi-static structural deformations
resulting from slowly varying temperature differences. A quasi-static deformation consists of a succession
of equilibrium displacements each corresponding to the temperature difference at a given instant in time.
Since the temperature differences driving thermal bending motions develop slowly, appendage
accelerations are very small. Thermal snap (or thermal elastic shock) motions involve rapid, non-
oscillatory appendage deformations initiated during orbital eclipse transitions. A thermal snap response is
similar to quasi-static TISM in that it consists of a succession of quasi-equilibrium displacements resulting
from time-varying temperature differences in appendages. However, in the thermal snap case, the rapid
rise and decay of the temperature differences result in brief acceleration transients in the appendage
structural tesponse at times corresponding to shadow crossings. Thermally-induced vibrations, which
consist of a quasi-static deformation and superimposed oscillations, are a stable dynamic response and may
involve bending, torsional, or combined bending and torsional structural motions. Thermally-induced
vibrations typically occur when flexible appendages are subject to rapidly developing or decaying
temperature differences such as when the satellite undergoes an orbital eclipse transition. The most severe
type of thermally-induced structural motion is thermal flutter. Thermal flutter is an unstable thermally-
induced vibrations response. The instability mechanism is coupling between incident heating and
structural deformations. Thermal flutter may occur for both bending and torsional motions. Table 1
presents a compilation of cases where satellite performance was affected by TISM of solar arrays. The
table presents a list of satellites known to have experienced solar array TISM, the satellite launch dates, and
bri